

1

Setting the Stage

What do humans need:

- Sustenance
- Shelter
- Help
- Hope

2

Setting the Stage

Imagine a world without infrastructure:

- Transportation
- Energy
- Expertise

Setting the Stage

• Transportation effects are non-trivial

Setting the Stage

- Imagine a world without concreteBuildingsServicesTransportation

5

Setting the Stage

So lets keep building!

• But...

Setting the Stage We use a lot of concrete

Concrete impacts the environment
 Changes in environment affect

 Changes in environment affect infrastructure needs

7

Setting the Stage The conundrum then is: how do we deliver/maintain the infrastructure without hurting the planet?

8

Setting the Stage Measurement • Economics still rule • It's more than carbon • but...

10

Where Does the Carbon Come From

- Heat! (about 40%)
 - Cement ingredients heated to ~1400°C
 - Heat exchangers improve efficiency
 - Alternative fuels
- Chemistry (the rest)
 CaCO3 → CaO + CO2
 - \bullet CaO + other stuff \rightarrow portland cement
 - Can we use alternative calcium sources?
- Most of the CO2 footprint is tied to the cementitious system

11

Use Less Concrete in the Structure

- More efficient designs
 - · Beware of rules of thumb, and cut-and-paste
 - ME-Design procedure
 - Appropriate construction systems
- Avoid replacing it
 - Longer lasting
 - Use existing equity of older pavements (overlays)

13

Use Less Binder in the Concrete

- Cementitious binder is about 9-15% by mass of concrete
- · Many specifications call out a minimum
 - That may be more than needed

14

Use Less Binder in the Concrete

- Minimum required is defined by
 - Enough paste to fill the gaps between the aggregate, plus a bit
 - Aggregate gradation
 - Workability
- Excess can be deleterious
- Performance Engineered Mixtures
 - Some states are reporting cutting binder contents by 30%

Use Less Cement in the Binder

- Supplementary cementitious materials
 Enhance performance

 - Increase longevityReduce disposal headaches
 - Ternary combinations
 - What about their carbon footprint?

16

Use Less Cement in the Binder

- Supplementary cementitious materials
 Availability locally?

 - Harvested fly ash

17

Use Less Cement in the Binder

- Other SCMs
 - Recycled Ground Glass, ASTM C1866
 - Locally processed waste products
 - Cost of testing compared with value of product

Use Less Cement in the Binder

- Portland Limestone Cements
 - Up to 15% ground limestoneSimilar performance

 - Becoming the norm

19

Reduce Carbon Footprint of Cement

• PCA has a plan...

20

Use Low-Carbon Cements

- Geopolymer cements / Activated fly ashes
- Calcium sulfo-alumina-cements
- Belite cements
- Other chemistries
- Balancing availability, cost, constructability and longevity...

Use Low-Carbon Cements

- Test sections being planned at MNRoad
 - Assess CO₂ savings
 - Measure performance under traffic
 - 16 sections
 - · Control and optimized mixtures
 - Reclaimed fly ashes
 - Geopolymers
 - Carbon injection
 - Innovative SCMs

22

Other Actions

- Recycled Concrete
 - Reduces need for virgin materials
 - · Eliminates disposal needs
 - Foundation or in the concrete?Depends on quality needs
 - About 140 Million Tons recycled annually

23

Recycled Concrete Aggregate

Technical products developed:

- How to engineer RCA applications
- Use RCA in most advantageous way

Coming soon

- Construction by-products
- RCA in pavement mixtures
- Industrial by-products

Cavalline

Put the Carbon Back!

Natural carbonation

- Slow
- Dependent on environment
- Can compromise steel protection
- Can be accelerated with grinding

25

Put the Carbon Back!

- Inject carbon dioxide into concrete in the mixer
- CO₂ is mineralized then converts to solid CaCO₃
- Reported to improve permeability

26

Measurement

• Life-cycle assessment (LCA)

Construction • Haul distance • Disturbance • Noise • Dust • Access • Delays • Traffic • Safety

Other Factors

- Resilience
- Albedo (heat island)
- Lighting (& light pollution)
- TiO2

31

So

• This is not new

32

So

- Change is inevitable
- Some change has happened
- Incremental change will help Is that enough?
- What next?

Striidom van der Merwe

