

Outline Bridge Superstructure Pre-stressed and Post-Tensioned Girders Concrete Beams and Columns Steel Girders Bridge Decks Concrete Asphalt Overlaid Concrete White-Topping on Concrete

Concrete Dams

- Dam Integrity
- Spillway Subgrade Support

2

SOISON ENGI

General Concrete	Ultrasonic Pulse Velocity
Condition	ft/s (m/s)
Excellent	Above 15,000 (4,500)
Good	12,000-15,000 (3,600 - 4.500)
Questionable	10,000-12,000 (3,000 - 3,600)
Poor	7,000-10,000 (2,100 - 3,000)
Very Poor	Below 7,000 (2,100)

-				
-				
-				
-				
_				
-				

Fusion Overlay of NDE Scanning and Photogrammetric Image Results for Concrete Bridge Girders

- Photogrammetry detailed mapping of concrete surface distress conditions
- 3-D Ground Penetrating Radar (GPR) detection/mapping of embedded reinforcing, PT Ducts and steel plates
- Spectral Analyses of Surface Waves (SASW) cracking extent, perpendicular crack depths, void/honeycomb and velocity/modulus
- Impact Echo Scanning (IES) cracking, corrosion delamination damage, honeycomb, thickness, voided vs. grouted post-tensioning ducts
- Data fusion overlay NDE results overlaid on photogrammetric images

23

Photogrammetry Method

- Procedures
 Capture Raw Photographic Digital Images with high resolution phone camera at a minimum telephoto lens camera useful for larger structures Identify target features that occur in multiple photographs.
- Use angle changes in target features from photograph to photograph to determine the 3D structure of the object
- Project pixels from the photos onto the 3D structure and generate texture .

Olson ENGINEERING

- Agisoft Metashape software used for bridge image processing on Windows PC with fast processor/GPU
- High resolution (0.6 to 1 mm) images took 1-2 hours of processing
- Offers 100% coverage but large data files (1 GigaByte)

25

Digital Photgrammetry Pro's and Con's

Advantages:

- Low-cost equipment iPhone/Android or telephoto digital cameras
- > Deterioration progress over time of surface concrete can be precisely compared
- Detailed permanent record of defects marked during inspection
- > 1 GB high resolution images can be viewed with Windows 10 3-D viewer Limitations:
- Only can collect data on objects in line-of-sight .
- Multiple angles/photographs will likely be required for full coverage and identifiable features in overlapping photographs

Summary of NDE and Data Fusion Capabilities

- Photogrammetry provides detailed imaging with depth of concrete surface conditions
- Use of 3-D Ground Penetrating Radar (GPR) can image complex reinforcement, PT duct and embedment conditions
- Spectral Analyses of Surface Waves (SASW) provides data on depth of cracking and concrete integrity as well as one-sided velocity measurements
- Impact Echo Scanning (IES) identifies grouted vs. voided Post-Tensioning Duct conditions and delamination/cracking in concrete
- Data Fusion integrates Internal Concrete Conditions from NDE with Photogrammetric Surface Concrete Images for clearer Structural Assessment

Olson ENGINEERING

46

- Requires extensive training and experience for analysis, but field data collection less complicated
- Image internal flaws in 2-D and now 3-D fashion with angled and direct tests
- A picture is worth a thousand words sometimes and velocity tomograms provide an image of internal void, cracking and honeycomb
- Requires a lot of 2-sided UPV testing and more detailed analysis to obtain clear images

SOISON ENG

55

56

Bridge Deck Condition Assessment Methods

- Visual assessment and Sounding visual inspections guide NDE method selection
- Impact Echo Scanning delamination mapping on bare and epoxy coated Concrete Decks
- > Spectral Analysis of Surface Waves Scanning for delamination mapping on Asphalt Overlaid Decks
- Ground Penetrating Radar Scanning for top steel depth and delamination damage potential
- Infrared Thermal Images for top steel delamination (not discussed)
- Galvanostatic Pulse for rebar corrosion half-cell potential, concrete resistance and corrosion rate (not discussed)
- > Destructive Coring laboratory tests, NDE results confirmation & Service Life

SOISON ENGINE

61

Evaluate general concrete and asphalt quality, cracking damage and slab/deck/pavement thicknesses and elastic modulus for strength estimation (calibrated with cores)

S³-IE Scanning to map Delaminations in Corroded Bridge Deck

Test Area Between Joints	Total Area Tested (ft ²)	Sound Area (ft ²)	Sound %	Near-Surface Delamination Area (ft ²)	Near-Surface Delamination Area %	Internal Horizontal Cracking 3"- 5.5" dp (ft ²)	Internal Horizontal Cracking 3"- 5.5" dp %	Test Area Between Joints	Estimated Near Surface Repair Volume (yd ²)	Estimated Interna Cracking Repair Volume (yd ³)
33 - 31	17,144	15,877	92.6	1,078	6.3	189	1.1	33 - 31	10.0	2.9
35 - 33	17,751	16,458	92.7	1,119	6.3	173	1.0	35 - 33	10.4	2.7
37 - 35	18,341	16,435	89.6	1,707	9.3	199	1.1	37 - 35	15.8	3.1
39 - 37	18,780	16,814	89.5	1,686	9.0	279	1.5	39 - 37	15.6	4.3
41 - 39	13,364	12,357	92.5	777	5.8	230	1.7	41 - 39	7.2	3.6
43 - 41	13,726	12,818	93.4	775	5.6	133	1.0	43 - 41	7.2	2.1
45 - 43	13,596	12,532	92.2	800	5.9	264	1.9	45 - 43	7.4	4.1
47 - 45	13,186	12,471	94.6	564	4.3	151	1.1	47 - 45	5.2	2.3
49 - 47	12,560	11,899	94.7	562	4.5	100	0.8	49 - 47	5.2	1.5
51 - 49	11,966	11,417	95.4	452	3.8	97	0.8	51 - 49	4.2	1.5
53 - 51	11,838	11,128	94.0	557	4.7	152	1.3	53 - 51	5.2	2.4
55 - 53	12,277	11,825	96.3	331	2.7	121	1.0	55 - 53	3.1	1.9
57 - 55	12,954	12,460	96.2	389	3.0	106	0.8	57 - 55	3.6	1.6
59-57	14,027	13,479	96.1	378	2.7	171	1.2	59 - 57	3.5	2.6

S³-IE-SASW Sensor Wheel Setup

- Use 2 identical sensor/impactor wheels
- Only one wheel with the impactor turned on and displacement transducers lined up for left wheel IE test and SASW test between wheels
- The spacing between the transducers is typically 6 to 9 inches for asphalt overlaid decks
- Can rotate the wheels 30 degree out of phase to perform IE testing on both wheels simultaneously

85

SOISON ENGINE

86

Technologies for Assessment of Asphalt Overlaid Decks

- Sounding hard to hear through the asphalt
- Infrared Thermography hard to apply the heat source to the concrete layer through the asphalt plus debonding of asphalt/concrete interface and sensitive to the first 2-3 inches •
- Impact Echo Scanning asphalt absorbs the energy (unless colder and concrete-like) and it can be debonded
- Ground Penetrating Radar
 Complicated by de-icing salts and moisture that is often present at asphalt/concrete interface
- Spectral Analyses of Surface Waves detected delaminations of asphalt pavement lifts in SHRP 2 R06D National Center for Asphalt Technology study at Auburn University and extended to Asphalt Overlaid Decks

Olson ENGINEERING

88

Sonic Surface Scanner S³-IE Summary

- Impact Echo Scanning had the most resolution of Top Delaminations on concrete bridge decks better than GPR and chain-dragging
- IE identified bottom delaminations as well as profiling deck thickness echoes (where sound above)
- GPR method is not sensitive to bottom delaminations and better at mapping damage potential in vehicle speed surveys – not as precise as Impact Echo for project level surveys
- Spectral Analysis of Surface Waves (SASW) for mapping out delaminations of asphalt overlaid concrete bridge decks and asphalt pavement lift debonding
- IE Scanning mapped out debonded white-topped concrete deck
 Ø Olson ENGINEERING

98

