



2







5







8







11







14



### Information Needed for Axle-Load Design From materials, site, and designer Concrete compressive strength Subgrade modulus Safety Factor (SF) Joint conditions – Joint Factor (JF) From lift truck specifications Lift truck capacity Vehicle weight (total axle load) Wheel configuration and spacing Tire pressure Wheel contact area

16



17







20



## Joint Factor Original PCA Charts developed for interior loading by pneumatic tired wheels Stresses due to edge loading are higher - up to 60% higher Edge loading occurs at joints that do not have complete load transfer Smooth dowel bars or dowel plates Aggregate interlock decreases when joint opens

22



23

# Engineering Judgement Joint Factor (JF) Safety Factor (SF) Applied Load Considerations Effective Contact Area Back-to-Back Post Legs Aisle Width v. Load Width Complete Set of Design Assumptions Must Be Considered!





26







29







32







35







38







41

# Contraction Joints • Control Random Cracking Due To Restraint to Concrete Shrinkage • Installed at Proper: - Spacing - Depth - Timing

### **Contraction Joints**

Joint - A crack placed where we want it to be.

Crack - A joint placed where the concrete wants it to be.

43



44

### **Contraction Joint Spacing**

- American Concrete Institute (ACI)
  - 36 Times Slab Thickness

6-in.-thick slab = 18 ft joint spacing

- Portland Cement Association (PCA)
  - Joint Spacing (ft) = 2 to 2.5 Thickness (in.) 6-in.-thick slab = 12 to 15 ft joint spacing

Maximum 30 Times Slab Thickness

15 ft (4.5 m) Maximum - Pavements



### Contraction Joint Depth Create a Weakened Plane to determine Crack Location How Deep? Deep Enough to Cause Crack '4 Slab Thickness 6-in.-thick slab = 1½-in.-deep joint Grooving/Tooling or Sawcutting Beware of Crack Promoting Insert (Vertical?)

47



### **Contraction Joint Timing**

- Before Tensile Stress Exceeds Developed Tensile Strength (Crack)
  - Restraint to Volumetric Decrease Friction, Penetrations
- Just After Peak Heat of Hydration (Cooling)
  - Drying Shrinkage & Temperature Contraction
  - Generally 8 to 12 Hours After Placement

49

### Joint Reinforcement

- Load Transfer
  - Transfer load from one panel to the next
  - Aggregate Interlock
  - Mechanical Devices Dowel Bars Plate Dowels
  - Transferred Steel Reinforcement

50







53







56







59





### Reinforcement Transferred Through Joints • Welded Wire Fabric (WWF) Mesh - Rolls or Sheets • Reinforcing Bars Mats • Post-Tensioning • Shrinkage-Compensating

62







65







68







71







74



Times the Widening Per Joint)

Shrink and Curl.

### Extended-Joint Slab Systems • Design Extends Joint Spacing Beyond that Recommended by ACI 360. – Presumably Assumes No/Minimal Out-of-Joint Random Cracking or Achieves Serviceable Cracking. • Owner Should be Informed of Expectation – Must Accomplish One or More of the Following: • Reduce Concrete Shrinkage Potential to Negligible • Reduce Restraint • Keep Random Cracks Tight and Closely-Spaced – Design for Joint Widening (1/4 the Joints Results in 4

Slab Systems That Require Sawcut Contraction Joints

76



77







80







83







86







89







92







95







98







101







104



### "Minimizing" Shrinkage and Slab Warping • Use Quality Aggregate • Minimize Paste Quantity • Increase Aggregate Size • Optimize Aggregate Gradation • Minimize Cement Content • Maximize Paste Quality • Reasonable Water/Cement Ratio • Just Enough Water for Workable Slump

106



107







110

# Minimizing Water (Paste) • Use Good Quality Well-Graded Aggregate • Maximize Coarse Aggregate Topsize to Decrease Total Water in Mix





113







116







119







122







125





### Slab on Ground Design and Details Conclusions Design and build for serviceability in accordance with owners expectations Anticipate the drying shrinkage potential for local materials when determining joint reinforcement Predict the impact of each design and construction feature and advise the owner

128





### Slab on Ground Design and Details Conclusions

- Design and build for serviceability in accordance with owners expectations
- Anticipate the drying shrinkage potential for local materials when determining joint reinforcement
   Predict the impact of each design and construction feature and advise the owner
- Always "design" an industrial floor slab. Don't simply "specify" slabs

131



### Slab on Ground Design and Details Conclusions

- Design and build for serviceability in accordance with owners expectations
- Anticipate the drying shrinkage potential for local materials when determining joint reinforcement
  Predict the impact of each design and
- construction feature and advise the owner
- Always <u>"design"</u> an industrial floor slab. Don't simply <u>"specify"</u> slabs
- And remember...

133



134

