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About the Course – LCI-101 
Learning Objectives:
• Define the term – embodied carbon
• Understand how to establish up front carbon objectives and engage 

stakeholders early in design to reach more sustainable results
• Understand how specifications affect the GWP of a concrete mix.
• Understand how to quantify embodied carbon of concrete on a project and 

reduction strategies available in the local market

1 Learning Unit/HSW



The Problem



The Reality
• Every year

– 6.13 billion square meters 
of buildings are 
constructed.

– 3729 million metric tons 
CO2 per year. 

• By 2050
– embodied carbon 

emissions and operational 
carbon emissions will be 
roughly equivalent.



The Challenge
• Embodied carbon from the 

building materials 
produce 11% of annual global 
GHG emissions.

• Concrete, iron, and steel alone 
produce ~9% of annual global 
GHG emissions.

• Likely will need to build with 
more robust materials like 
concrete.

• How do we minimize 
environmental impacts?



The Challenge
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Cement drives concrete’s environmental impact
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3000 psi mixture with no SCMs



The Solutions
Concrete Innovations
• More efficient concrete mixtures
• Blended cements
• Admixtures
• Supplementary cementitious materials
• Carbon capture technologies



More Efficient Concrete Mixtures 



More Efficient Concrete Mixtures 



Baselines/Benchmarks

More Efficient Concrete Mixtures 



More Efficient Concrete Mixtures 
• Performance-based Specifications

– No limitations on materials and quantities
TIP: Guide specification at www.nrmca.org/sustainability
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Prescriptive specifications limit opportunities to 
reduce concrete environmental impact

Common prescriptive requirements Occurrence in 
Specifications

Restriction on SCM quantity 85%

Maximum water-cement ratio 73%

Minimum cementitious content for floors 46%

Restriction on SCM type, characteristics 27%

Restriction on aggregate grading 25%

Source: Obla & Lobo, NRMCA, 2015



More Efficient Concrete Mixtures 

Manufacturer Qualifications: 
• NRMCA Certified Concrete 

Production Facility
• NRMCA Concrete Technologist 

Level 2

Installer Qualifications:
• ACI Flatwork Finisher

Testing Agency Qualifications: 
• Meets ASTM C1077
• ACI Concrete Field Testing 

Technician Grade I
• ACI Concrete Laboratory Testing 

Technician Level I
• Results certified by a registered 

design professional

QUALITY CONTROL



Blended Cements

Cement Type Description Notes
Type IL (X) Portland-Limestone Cement Between 5% and 15% 

interground limestone
Type IS (X) Portland-Slag Cement up to 70% slag cement
Type IP (X) Portland-Pozzolan Cement up to 40% pozzolan. Fly ash is 

the most common.
Type IT (X)(X) Ternary Blended Cement
• (X) identifies the percentage of portland cement replacement

• TIP: Permit ASTM C 595 hydraulic cements
• TIP: Permit ASTM C 1157 hydraulic cements

ASTM C 595



Admixtures
• Water reducing

– Decreases water demand
– Decreases cement demand

• Strength enhancing admixtures
– Decreases cement demand

• Viscosity modifying
– Improves workability

• Set accelerating
– Can compensate for high SCMs

• TIP: Permit all admixture types (details in guide spec)



Supplementary Cementitious Materials
• Slag Cement

– A latent hydraulic material 

– Minimal pozzolanic behavior

• Pozzolan – fly ash, natural pozzolans, silica fume
– Siliceous or siliceous and aluminous material

– Little or no cementitious value

– With moisture reacts with calcium hydroxide

– Fine form



Hydraulic Cement
• Cement reacts with water to 

form cementitious compounds
• Can set and harden under water

Portland Cement + Water C-S-H + CH



Hydration and SCMs

Cement + Water  C-S-H + CH

Pozzolan + CH  C-S-H

Slag + Water  C-S-H (no CH)

Slag + CH  C-S-H 

Alkali/lime
Activator
(cement)

Pozzolanic

Hydraulic

Pozzolanic

Hydraulic



Ground Glass Pozzolans



Ground Glass Pozzolans



CT DEEP Case Study

Connecticut Department of Energy and Environmental Protection (DEEP) 
is the first net-zero and LEED Platinum building built by the state. 



CT DEEP Case Study

40% cement replacement 
in the structural concrete 
mixes with a ground-glass 

pozzolan made from 
100% locally recycled 
post-consumer glass. 



Natural Pozzolans



Natural Pozzolans



Limestone Calcined Clay Cement
• Cement made from blending:

– Limestone
– Calcined Clay
– Gypsum

• Low Carbon alternative to OPC
• Developed in late 1990’s in Switzerland
• Well tested/proven
• Its use encouraged by worldwide sustainability 

and energy organizations



Limestone Calcined Clay Cement
• Blend of Limestone/Calcined Clay

– Properties comparable to OPC
• Comparable or even Superior Strength/Durability
• Improved Workability
• Easier to place and finish

– Significantly Lower Carbon Emissions
• Potential reductions of up to 40 to 50%

– Production Emission Reductions as well
• Lower temperatures
• Lower energy/fuel consumption



Limestone Calcined Clay Cement
• Future of LC3

– Main ingredients abundant/widely available
• Calcined clay can be obtained from:

– A variety of natural clay sources
– Waste stockpiles

• Limestone also readily available
– Suitable replacement for dwindling supplies of 

fly ash and blast furnace slag



Biochar Concrete
• Type of charcoal produced from organic 

matter
– Wood chips
– Agricultural and Forestry waste

• Created by heating these materials in 
oxygen-deprived environment called 
pyrolysis



Biochar Concrete
• Added to concrete improves:

– Mechanical
– Thermal properties
– Increased strength/durability

• Reduced cracking
• Enhanced resistance to freeze/thaw

– High porosity/absorbs moisture
• Reduces concrete weight
• Improves insulation properties



Biochar Concrete
• Accelerated carbonation curing

– Biochar in concrete provides a larger surface 
area for carbon dioxide absorption

• Like natural carbonation with concrete, it 
mineralizes the CO2 into calcium carbonate

– New and cutting edge
• Additional testing/development of material 

standards for improved consistency and uniformity 



Remy Wines Case Study
• Winery Dayton, OR

– 5,000 sf slab
– 100 lbs. biochar/yd
– Sequestration:

• 10,230 lbs. of CO2 
equivalent

• Carbon neutral concrete



Expand the Supply of Fly Ash
• Over 1.5 billion tons of coal ash in landfills

• Some is fly ash

• Several companies have begun to recover 
fly ash from landfills

• Treat it using a process called 
“beneficiation” to meet construction 
standards 

– Reduce amount of unburned carbon

– Reduce ammonia

– Adjust particle size



Case Study: 102 Rivonia Road
• Designed with sustainability in mind

• 50% more sustainable than the average 
office building

• 4-star Green Star SA (South Africa) 
rating 

• Use of fly ash reduced the overall 
concrete footprint by 30%



Carbon Capture
• Carbonation: carbon dioxide (CO2) 

penetrates the surface of hardened 
concrete and chemically reacts with 
cement hydration products to form 
carbonates

• For in-service concrete, slow process

• Given enough time and ideal 
conditions

– all of the CO2 emitted from calcination 
could be sequestered via carbonation. 

– Real world conditions are usually far 
from ideal.



Carbon Capture cont’d
• Carbonation depends on:

– Exposure to air
– Surface orientation
– Surface-to-volume ratio
– Binder constituents
– Surface treatment
– Porosity
– Strength
– Humidity
– Temperature
– Ambient CO2 concentration. 



Carbon Capture cont’d
• CO2 uptake are greatest when the 

surface-to-volume ratio is high
• When concrete has been crushed and 

exposed to air.
• Article “Substantial Global Carbon 

Uptake by Cement Carbonation,” 
Nature Geoscience

– Estimates cumulative CO2 sequestered in 
concrete is 4.5 Gt 1930-2013

– 43% of the CO2 emissions from production of 
cement

– Carbonation of cement products represents a 
substantial carbon sink. 



Natural Carbonation
• Enhance carbonation at 

end-of-life and second-life
• Crushed concrete can 

absorb more CO2 over 
short period

• Leave crushed concrete 
exposed to air for 1-2 
years before re-use



Enhanced Carbonation
• Inject CO2 into concrete
• Creates artificial 

limestone
• Sequesters small 

amount of CO2
• Enhances compressive 

strength
• Reduces cement content
• Enhances durability



725 Ponce, Atlanta
• 360,000 square feet of office space

• 48,000 cubic yards of carbonated concrete

• Concrete sequestered 680 metric tons of CO2

• The amount of CO2 absorbed by 800 acres of 
U.S. forest each year



Enhanced Carbonation
• Specially formulated cement
• Significantly reduces CO2 emissions 
• Uses less limestone, fired at lower 

temperatures
• Produces 30% less greenhouse gases
• Concrete cures in contact with a CO2 

atmosphere in curing chamber
• Sequesters CO2 equal to 5% of its 

weight
• Claims concrete’s carbon footprint is 

reduced by 70%



Enhanced Carbonation
CO2 treated fly ash (or other SCM)
• Infuse CO2 under pressure
• Combines to make carbonates
• Increases compressive strength by 32%

– Reduces cement demand

• Reduces chloride permeability
– Increased durability

• Eliminates between 50 to 250 kg of CO2 per 
metric ton of product

• Does not have any impact on air entrainment



Enhanced Carbonation
• Combine industrial CO2 emissions with metal oxides
• CO2 absorbed construction aggregate (limestone)
• 44% by mass permanently eliminated CO2

• Substrate is small rock particles or recycled 
concrete 

• Carbon-negative concrete is achievable
– 1 yd3 of concrete contains 3,000 lbs of aggregate
– Roughly 1,320 lbs of sequestered CO2

– Offsets considerably more than the amount of CO2 
generated during cement production                  
(roughly 600 lbs per yd3)



Conclusion: The Future of Concrete
• Anticipated population growth 
• Ever expanding built environment 
• Increased concrete demand

• Continued innovations 
– lowering environmental impacts
– Improving performance
– Expanding range of applications



www.BuildWithStrength.com/design-center
• Structural system recommendations
• First cost comparisons
• Operating cost comparison
• Design/construction collaboration
• Specification review
• Carbon footprint



Concrete Design Center

Patrick Matsche
PMatsche@nrmca.org

(415) 672-5275

Brandon Wray
BWray@nrmca.org

(408) 806-0453

Justin McCain
Jmccain@nrmca.org

(253) 228-6295 Michael Wymant
MWymant@nrmca.org

(850) 818-2057

Frank Mruk
Fmruk@nrmca.org
(401)585-7756

Donn Thompson
DThompson@nrmca.org
(224) 627-3933

Lionel Lemay
Llemay@nrmca.org
(847) 922-7995

Derek Torres
DTorres@nrmca.org
(973) 876-0938



Codes and Standards

Julian Mills-Beale
Director, Codes and 
Standards
*Civil/structural, resilience
jmills-beale@nrmca.org
(484)633-7452

Shamim Rashid-Sumar
SVP Codes and 
Standards
*Fire safety, resilience, 
team leader
ssumar@nrmca.org
(917) 484-1960

Matthew Lemay
Manager, Codes and Sustainability
*EPDs, Responsible Sourcing
mlemay@nrmca.org
(847) 323-0413

Tiffany Reed-Villarreal
Director, Sustainability 

Codes and Standards
treedvillarreal@nrmca.org

(817) 771-3595

Lionel Lemay
EVP, Structures and 
Sustainability
llemay@nrmca.org
(847) 922-7995

Darryl Dixon
Director, Energy codes 

and Standards
ddixon@nrmca.org

(813) 727-9324



www.nrmca.org/sustainability



Concrete Innovations:-
Pathways to Reducing Carbon Footprint-

Questions?

Donn Thompson
dthompson@nrmca.org
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