Compressive Strength Failures Causes Evaluation Resolution Wednesday, August 3, 2022 12:00 PM – 1:00 PM

1

Presenters

Alf Gardiner and Dan Vruno are Principal Engineers at the two largest concrete testing companies in the area

2

Goals

Three goals for this presentation:

- 1. Provide you with reasons for the low strengths
- 2. Discuss how low strength is typically evaluated
- 3. Discuss what can be done to resolve the issue

FAILED COMPRESSIVE STRENGTHS

Now what do I do?

4

What to do When Cylinders Fail • Are you Calm? • Yes – Great now what? • Review the data ---- All the DATA! • First example • Call came in with cylinder needing to meeting 5000 psi • What happened.

 Cylinders cast 2/4 - set #39 - w/o 1300744. These cylinders had a high max temp of 113F. Had heater set at about 70 according to thermometer in box before I left site, when picked them up temp was a lot higher. Cylinders were from an Interior s.o.g pour at grids A.2 to B – 2.9 to 4.

17

Age at time	Specimen		Compressive
of Test	Size	Specimen	Strength (psi)
7	4 by 8	А	2800
28	4 by 8	В	3500
28	4 by 8	С	4490
28	4 by 8	D	4370
Average Compressive Strength			<u>4120</u> 4430

Example Analysis				
Set No.	Test Results (psi)	Running average of 3 Test (psi)		
1	4500			
2	4740	4300		
3	3670			
		23		

What's Next?				
	Specified Stre	ngth = 5000 p	si	
Age at time of Test	Specimen Size	Specimen	Compressive Strength (psi)	
7	4 by 8	А	2800	
28	4 by 8	В	4230	
28	4 by 8	С	4490	
28	4 by 8	D	4370	
Average	Compressive S	trength	4360	
			24	

• Concrete in an area represented by core tests shall be considered structurally adequate if (1) and (2) are satisfied:

- The average of three cores is equal to at least 85 percent of *fc'*.
- No single core is less than 75 percent of *fc'*.

26

Worst Case Scenario

31

Check the Testing

The cylinders don't always represent the concrete on site

Column Breaks

Presenters

Alf Gardiner and Dan Vruno are $\ensuremath{\mathsf{Principal}}$ Engineers at the two largest concrete testing companies in the area

Abrams Water-Cement Ratio "Law"

"For given materials the strength of concrete (so long as we have a plastic mix) depends solely on the relative quantity of water as compared with the cement regardless of mix or size and grading of aggregate."

Duff A. Abrams, 1918

4

MnDOT Oven Dry Mix Design	CEMENT ROCK SAND WATER 236.9 ÷ 56	564 1,800 1,300 236.9 64 = 0.42

CEMENT 564 ROCK 1,800 Oven Dry Sand 1,300 Mix WATER 236.9 Design 236.9 ÷ 564 = 0.42
