

Objectives

- 1. Understand the basics of SCM replacement in concrete mixtures.
- 2. At the conclusion of the presentation, participants will have a better understanding of what is being done to make concrete construction more environmentally friendly.
- 3. Learn where the concrete construction industry might be headed with regards to green building and sustainability.
- 4. Understand the problems in the realization of and potential barriers to green concrete construction

BETQN

5

What is Concrete?

- Portland Cement, Water, Air, Aggregates to make synthetic rock
- Add SCM's ca 1980
- Add admixtures ca 1970
- Fibres
- Corrosion Inhibition ca 1980

What is Concrete?

- A two-phase composite one phase continuous, the other discrete
- A binder that is activated to make a glue that has desirable and predictable properties in the plastic and hardened state

BETQN

8

What is Concrete

- A binder that sets and binds aggregate materials.
- Generally a plastic or flowing mixture. Hydraulic cements will set by chemical action and the products remain insoluble in water.
- Portland Cement has filled this role well with the exception of the embodied energy and emissions
- A number of older systems and newer systems are available
 BETQN

Approaches to Green Concrete

- Reduce the amount of concrete being used
- Reduce the amount of clinker in concrete
- Eliminate clinker all together
- Increase the lifecycle of the structure
- Know about and measure the inputs and outputs from the built environment

BETQN

10

Pozzolanic / Latent Hydraulic / Catalytic /

- Olay/Mineral Mix Nucleation/dispersion
 Output
 Description
 Section 2 Construction
 Description
 Descriptin
 Desc
- Gypsum
- Glass
- Recycled Concrete
- GGBFS
- Wollastanite nucleation accelerator
- Micro Silica / Metakaolin

Approaches now and in the Wings

Pozzolans

- Latently hydraulic materials
- Type I L cement
- Limestone, Clinker and Calcined Clay (LC3)
- Alkali activation
- Geopolymers
- Synthetic Aggregate that is made from atmospheric CO₂

BETQN

13

Pozzolan Reaction

C2S,C3S,C3A, C4AF + water \rightarrow Glue +CH CH+Pozzolan \rightarrow Glue

Quantity of CH depends on clinker content and degree of reaction (Partially controlled by w/cm ratio)

BETQN

17

AET 4060

- RCP at 84 days 490 Coulombs passed
 A days
- Setting Time 4:30 Initial Set
- Air Void System
 - Air Content 5.5 percent
 - Spacing Factor 0.008 in
 - Specific Surface 600 in² / in³
- Shrinkage 0.005 percent at 28 days
- Strength Gain

BETQN

Annealing - old term for curing (1900)

- Heat Treating to get desirable Properties
- Mixtures are Self-Annealing when insulated
- Need to control temperature not to prevent freezing but to increase rate of hydration

20

Pre-Carbonation

- Aqueous solution saturated with free lime reacts with carbonic acid to become calcium carbonate (insoluble)
- Can be cementing
- Process is natural limestone and dolostone are made this way
- Can be used to make in-situ nucleation

BETQN

26

Alkali Activated Materials

No Clinker

- Using Flyash, Slag, Glass, other forms of Amorphous silica and Alumina
- Activate with high Alkalinity Materials: Sodium Hydroxide Sodium carbonate Sodium Silicate (Potasium)

BETQN

31

Synthetic Aggregates

- Pre-Carbonation
- Pressure or Sintering
- Biochar will hold water (internal curing) but will also absorb admixtures that rely on hydrophobic mechanisms

BETQN

38

Recycled Aggregate Concrete Aggregate Quality Requirements are high Most recycled concrete is fill (low value reuse)

Quality - Sustainability link

- Improved quality results in:
 - Fewer instances of incorrect materials accepted, batching errors
 - Less time spent on mix adjustments
 - Less returned concrete
 - Fewer callbacks due to concrete performance
- All of the above will result in
- Less energy and resources, less repair/removal/replacement

BETQN

40

Improved quality helps target a low S							
 Lower CO₂ Conserves natural resources 							
QC Standards (ACI 214R)	Excellent	V Good	Good	Fair	Poor		
S, psi	350	450	550	650	750	950	1250
f_{lpha}' , psi	4470	4600	4780	5020	5250	5710	6410
CM, lb/yd ³	447	460	478	502	525	571	641
CO ₂ , lb/yd ³	463	476	494	518	541	587	657

Corrosion Prevention is Easy

- Change the material
- Change the environment
- Isolate the material and the environment

• If that doesn't work see a.

Obstacles

- We are developing new technologies and new materials
- New processes and new construction methods
- Doing so not to improve construction or performance - to reduce / eliminate emissions and reduce energy needs
- History tells us that there will be problems and they will be discovered in practice.

BETQN

49

Conclusions

- Concrete is rapidly changing codes are not (cannot)
- We need to reduce or eliminate the clinker content of our concrete.
- We can currently use high volume replacement with pozzolan
- We are on the cusp of using materials that would require massive infrastructure investment (Plants, Equipment, People)
- Construction and Design methods will likely chage as we adopt new materials

