

Hydration, Temperature, Crystals, and Maturity

Condition	Average Mixing Water Increase ^a , lb/yd ³		
Delivery time maintained at 20 min. and concrete temperature increased from 65°F to 95°F	12		
Delivery time maintained at 90 min. and concrete temperature increased from 65°F to 95°F	19		
Temperature maintained at 65°F and delivery time increased from 20 to 90 min	14		
Temperature maintained at 95°F and delivery time increased from 20 to 90 min	21		
Temperature increased from 65°F to 95°F and delivery time increased from 20 to 90 min	33		

Material	Mass, <i>M</i> , kg	Specific heat kJ/kg • K	Kilojoules to vary temperature, 1°C	Initial temperature of material, <i>T</i> , °C	Total kilojoules in material*	
	(1)	(2)	(3) Col. 1 x Col. 2	(4)	(5) Col. 3 x Col. 4	
Cement Water Total aggregate	335 (M _C) 123 (M _W) 1839 (M _a)	0.92 4.184 0.92	308 515 <u>1692</u> 2515	66 (T _c) 27 (T _w) 27 (T _a)	20,328 13,905 45,684 79,917	
Material	Mass, <mark>M</mark> , Ib	Specific heat	BTU to vary temperature, 1°F	Initial temperature of material, <i>T</i> , °F	Total BTU in material†	
	(1)	(2)	(3) Col. 1 x Col. 2	(4)	(5) Col. 3 x Col. 4	
Cement Water Total aggregate	564 (M _c) 282 (M _W) 3100 (M _a)	0.22 1.00 0.22	124 282 <u>682</u> 1088	150 (<i>T</i> _c) 80 (<i>T</i> _w) 80 (<i>T</i> _a)	18,600 22,560 54,560 95,720	
Initial concrete temperature = $\frac{79,917}{2515}$ = 31.8°C To achieve 1°C reduction in initial concrete temperature: Cement temperature must be lowered = $\frac{2515}{308}$ = 8.2°C Or water temperature dropped = $\frac{2515}{515}$ = 4.9°C Or aggregate temperature cooled = $\frac{2515}{1692}$ = 1.5°C			Initial concrete temperature $=\frac{95,720}{1088} = 88.0^{\circ}\text{F}$ To achieve 1°F reduction in initial concrete temperature: Cement temperature must be lowered $=\frac{1088}{124} = 8.8^{\circ}\text{F}$ Or water temperature dropped $=\frac{1088}{282} = 3.9^{\circ}\text{F}$ Or aggregate temperature cooled $=\frac{1088}{682} = 1.6^{\circ}\text{F}$			

	Т	empera	ature Estin	nator			
Material	Agg	Mix 1		Mix 2		Mix 3	
Туре	Moisture	SSD	Temp (F)	SSD	Temp (F)	SSD	Temp (F)
Cement		564	150	564	150	564	150
Water		280	80	280	37	205	80
3/4''	1.0%	1,500	80	1,500	80	1,500	80
3/8"	1.0%	300	80	300	80	300	80
Fine Agg.	3.0%	1,419	80	1,419	80	1,419	80
Enter Ice Amount (lbs)		0	32	0	32	75	32
Concrete Temperature		87.9		79.3		74.0	

Typical evaporation protection measures

- Fogging
- Evaporation retarders
- Wet burlap
- Wind breaks
- Don't forget to protect QC specimens!
- Don't forget to coordinate with other project requirements

At some point in your concrete career...

The dreaded 3 pm phone call... The truck broke down.

Specifying Concrete in Hot Weather

Specifications

ACI 201, "Guide to Durable Concrete" ACI 301, "Standard Specification for Structural Concrete" ACI 305, "Hot Weather Concreting" ASTM C94, "Specification for Ready-Mixed Concrete"

Good Reference Materials:

NRMCA Concrete In Practice 12 "Hot Weather Concrete" PCA Design and Control Lehigh iCheck app (android and iphone)

