

Oregon State University College of Engineering

Overview

- ASR Basics
- Specifying ASR resistant concrete
- Proper test methods are critical: A Case Study
- Current research

We will only be dealing with ASR today

4

Most Supplementary Cementing Materials (SCMs) can be used to control ASR

- SCM composition (CaO, SiO₂, Al₂O₃, Na2Oe)
 Dosage rate
- Nature and level of aggregate reactivity
- Alkali content supplied by the portland cement (and other sources also important)

11

Prevention of ASR in Fresh Concrete

Oregon State University College of Engineering

- Most SCMs can be used to control ASR
 SCM composition (CaO, SiO2, Al2O3, Na2Oe)
 Dosage rate

 - Nature and level of aggregate reactivity
 Alkali content supplied by the portland cement (and other sources also important)
- Lithium can also be used to control ASR in <u>fresh</u> concrete, and may be used in combination with SCMs
 Provided Li (Na+K) is sufficient (can be determined through testing)
 Depends on aggregate reactivity level
- Restricting alkali contribution
 Alkali loading is key, not just alkali content of portland cement
 Low alkali cement energy intensive
- Avoid reactive aggregates Usually not an option
 Highly critical structures

SCM Prevention Mechanisms for ASR Definition of the prevention of

Oregon State University College of Engineering

How do we design concrete mixtures that are resistant to ASR?

16

ASR Standards

Oregon State University College of Engineering

Two main approaches:

Prescriptive specifications

Performance-based specifications

North American Standards Associations:

• CSA, ASTM, AASHTO, FHWA - use a

combination of these approaches

• ACI 201-2R-16 gives general recommendations

	TABLE 1 Classification	of Aggregate Reacti	vity			
Aggregate-Reactivity Class	Description of Aggregate Reactivity	1-Year Expansion in Tes C1293, %	at Method	14-Day Expansion i C1260,	n Test Method %	-
R0	Non-reactive	<0.04		<0.10		-
R1	Moderately reactive	20.04, <0.12		20.10, <0	1.30	
R2	Highly reactive	20.12, <0.24		≥0.30, <0	1.45	
R3	Very highly reactive	20.24		20.45		
Size	Size and Exposure Conditions		Aggregate-R	eactivity Class	P2	-
Non-massive ⁴ concrete in a dry ⁴	anvironment	Level 1	Level 1	Level 2	Level 3	-
Massive ⁴ elements in a dry ⁴		1 mild	Local D	1	I must d	
environment		Level 1	Leve 2	Care 5	Level 4	
All concrete exposed to humid air,		Lovel 1	Loud 2	Local d	Lowel 5	
buried or immersed		Level 1	Cere 5	Care 4	Level 5	
All concrete exposed to alkalies in	service ^c	Level 1	Level 4	Level 5	Level 6	

Weit Collam of Promovering TABLE 3 Structures Classified on Basis of the Severity of Consequences Should ASR ^A Occur (Modified for Highway Structures from RILEM TC 191-ARP)					
Class	Consequence	of ASR	Acceptability of ASR	Examples ⁰	
Class SC1	Safety, economic, or consequences small	environmental Il or negligible	Some deterioration from ASR may be tolerated	Non-load-bearing elements inside building Concrete elements not exposed to moistu Temporary structures (service life < 5 year	
Class SC2	Some safety, economic, consequences if maje	or environmental or deterioration	Moderate risk of ASR is acceptable	Sidewalks, curbs, and gutters Elements with service life < 40 years	
Class SC3	Significant safety, econom consequences if m	iic, or environmental iinor damage	Minor risk of ASR may be acceptable	Pavements Foundstilons elements Rotaning walls Culverts Highway barriers Rural, Low-volume roads Procast elements in which economic costs replacement are severe Service life normally 40 to 74 years	
Class SC4	Serious safety, economic, or environmental consequences if minor damage		ASR cannot be tolerated	Major bridges Power plants Dams Nuclear facilities	
Select your Structure				Water treatment facilities Waste water treatment facilities	
Classification				Turinels Grifical elements that are very difficult to inspect or repair Service life normally ≥75 years	

Proper Test Methods are Critical

Significant expansion due to ASR ~\$7 million per year spent on efforts to reduce the illeffects of ASR

Intake Structure Grown vertically by ~23 cm (~1 foot!) Removed 63.5 cm (~2.5 feet) of concrete by slot cutting

~120 to 150 microstrain/year of unrestrained expansion

Service Life - ~150 years How long will this last? ~2030 - Complete replacement

Mactaquac Generation Status

Reconstruction – 2030 ??

- Number of alternatives investigated
- Construction of a similar powerhouse, intake and 10-bay spillway
- 500,000 m3 of concrete (654,000 yds³)
 Same aggregate from excavation will be used
- Extensive study started in 2005 to determine most effective and economic means for preventing future AAR

28

Recent research

Oregon State University College of Engineering

- AASHTO T380 Miniature Concrete Prism Test developed by Rangaraju and Latifee in 2010's.
- □ Validated for a wide range of aggregates for reactivity testing, only minor work done with SCMs (fly ash was the focus)
- Benchmark the MCPT against outdoor exposure blocks for efficacy of a wide range of prevention measures.

Tanesi, I., Drimalas, T., Chopperla, K.S.T., Reyene, M., Idelker, J.H., Kim, H., Montzarari, L. and Ardari, A., "Divergence between Performance in the Field and Lab Results for Alkali-Silica Reaction," Transportation Research Record, April 16, 2020, https://doi.org/10.1177/0361198120913288.

40

NCHRP 10-103

Improving Guidance of AASHTO R 80/ASTM C 1778 for Alkali-Silica Reactivity (ASR) Potential and Mitigation

 Cast exposure blocks with low/moderate alkali loadings

Oregon State University College of Engineering

- Focus on prevention
- Use prescriptive approach and existing data to select help inform prevention material quantities
- Investigate "new" accelerated test methods – Benchmark to existing field sites
 - Allow future benchmarking to new blocks

46

47

Conclusions Concrete is susceptible to ASR - Must have reactive aggregate, fine or coarse - ASR can be prevented through proper use of supplementary cementitious materials, lithium nitrate and/or low alkali contents - Prescriptive or performance-based approach - Reliable rapid test methods are still a challenge - Significant research thrust

References

Oregon State University College of Engineering

- E. R. Latifee, & P. R. Rangaraju (2015). Miniature Concrete Prism Test: Rapid Test Method for Evalu of Aggregates. Journal of Materials in Civil Engineering 27(7): Article ID 04014215.
- Laskey, M (2018). A New Performance Test for Evaluating the ASR Potential of Job Mixtures. M.S. Thesis, University of New Brunswick.
- Michael Thomas, B. F., Kevin Folliard, Jason Ideker, Medhat Shehata (2006). Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete. Cement and Concrete Research 36: 1942-1856.
- Naranjo, A. (2012). Proposed Test Method for Determining ASR Potential: The Concrete Cylinder Test (CCT). Texas Department
 of Tabaportation.
- Ranganju PQ, Kaveh A, Enugula SSR, & Latifet ER (2016). Evaluation of aliali-silica reaction potential of marginal aggregates using ministure concept entrom set (RCPT). Published as a part of proceedings of the 15th International Conference on Aliali-Aggregate Reaction (ICAAR) held in Sao Paulo, Brazil.
- Stacey S, Folliard KJ, Drimalas T, & Thomas MDA (2016). An Accelerated and more Accurate Test Method to ASTM C1293: The Concrete Cylinder Test. Published as a part of proceedings of the 15th International Conference on Aikali-Aggregate Reaction (ICAAR) held in Sao Paulo, Brazil.
- Tanesi, J., Drimalas, T., Chopperla, K.S.T., Beyene, M., Ideker, J.H., Kim, H., Montanari, L. and Ardani, A., "Divergence between Performance in the Field and Laboratory Test Results for Alkali-Silica Reaction," Transportation Research Record, April 16, 2020, https://doi.org/10.1037/s10210202000

