

<section-header><section-header><section-header><section-header><image><image><image>

What is mass concrete?

Definition (ACI)

any volume of structural concrete in which a <u>combination of</u> dimensions of the member being cast, the boundary conditions, the characteristics of the concrete mixture, and the ambient conditions can <u>lead to</u> undesirable thermal stresses, cracking, deleterious chemical reactions, or reduction in the long-term strength as <u>a result of</u> elevated concrete temperature due to heat of hydration.

9

American Concrete Institute

Simplistic Method	f _{SCM}							
	Class F Fly ash	0.5	Slag (0-20%)	1.0-1.1				
	Class C Fly ash	0.8	Slag (20-45%)	1				
	Silica Fume	1.2	Slag (45-65%)	0.9				
Concrete mixture:	Metakaolin	1.2	Slag (65-80%)	0.8				
 550 lb/vd³ cementitious materials content 								
• 25% Class Filly ash								
Type II cement (low heat)								
Equiv compart = $0.75 \times 550 \pm 0.25 \times 550 \times 0.5 \approx 481 \text{ lb/sd}^3$								
Equiv. cement = $0.75 \times 550 + 0.25 \times 550 \times 10.5 \approx 481 \text{ Jb/yd}^{\circ}$								
Temperature rise =	f _{ce}	ment						
0.14 - 0.16								
Concrete Temp = 80°F + 67°F ≈ 147°F								
American Concrete Institute				26				
				-				

	ethod for L	veterminin	g rempera	ture Rise
	Mixture 1	Mixture 2	Mixture 3	Mixture 4
Cementitious Materials Content	650 lb/yd ³ ; Type II cement; no SCM	550 lb/yd ³ ; Type II cement; no SCM	550 lb/yd ³ ; Type II cement; 25% Class F fly ash	550 lb/yd ³ ; Type II cement; 70% slag cement
Equivalent Cement Content	650 lb/yd ³	550 lb/yd ³	481 lb/yd ³	473 lb/yd ³
Temperature Rise	91°F	77ºF	67°F	66°F
Maximum Internal Concrete Temperature	171ºF	157ºF	147°	146ºF
American Concre	te Institute ys advancing			27

Size – • For p	Placement Dime	ensions minimum dimension	s.		
internal heat cannot escape as rapidly as it is generated					
	ACI 301-20 Optional Requirements	Commonly prescribed in specifications			
	48 in. (4 ft)	36 in. (3 ft)			
 Size alone is not sufficient to identify "mass concrete" 					
	can Concrete Institute Always advancing		34		
34					

Mass Concrete – Other References

- "Mass concrete for Buildings and Bridges", *Portland Cement* Association
- "When Should Mass Concrete Requirements Apply?", John Gajda, Aspire Magazine, Summer 2015
- "Engineering Mass Concrete Structures", John Gajda & Ed Alsamsam

59

American Concrete Institute

