

Pre-Install Conference • Attendees • Owner, Engineer, GC, Contractor, Ready-Mix, Testing, etc. • Agenda • Review the specifications • Discuss • Placement techniques • Mix design • Joints • Reinforcing • Curing • Etc.
--

• Design guidance • Testing – ASTM D • Material properti	ACI 440.1 R- 7205 es	15			
Table 4.2.1-Typical tensil	a properties of rein	forcing bars'	and the second second	-	
2	Band	UPSP	13100	-	
Summed Statik musik his OMPAL	48.6x78 (279.0x517)	84	WA.	a series	
Testivitespi, kai (MPA)	TD4=1(0) (10/1 (2) (10/0)	70 to 230 (383 to 590)	97 in 124 man in Ameri		
their meldes +0 kn (07n)	, 25-0 , (25m III)	5,3 to 7,4 (31 #46 #1 #7	15 yr Ner Ala O. HE2NH aw Minister		main for the Desire of
Yesters print	0.14 6/15/25	349	84	0.00	Contratta Bairforcett ott
Ranks and Jacor	e 0 ce 42 m	12031	84611		Piber-Rentfocovid Polymer (Pallin Burn-
Statement in the second statement in		1.44			

	Carrier Lands and the second	-	Apreciment ID	1.1.1	1	1.	4	5	6	Avg
ASTM C1609		Stat	Widds (in.)	6,00	5.98	5.05	5.95	5.90	5.00	5,95
1.0	ASTM CT003	A COMPANY	Depth (m)	5.00	5.90	3.90	5.00	5.90	5.98	5.98
	Mi n. No hop	2004	$\delta_{\rm L}$ - Deflection of Film Circle (iii.)	0.0025	0.0024	0.0024	0.0025	0.0024	0.0023	0.002
. 1		Delecter	Sp - Deflection of Peak Load (m.)	6.0025	0.0031	0.0027	0.00036	0.00059	0.0028	8,692
		1.00	Pi-Fint Cock Load (NC)	3,932	5,862	3,830	0.086	3,608	1,887	3,864
-		100	Pa - Peak Losil (Df.)	6.199	6,472	6,193	6,348	5.958	6.325	6,243
ŝ			Parts - Lond at L(990 (Df.)	2,215	2.684	2.233	2.129	1.888	2,007	2,187
		380	Pana - Lond at 1/150 (Bd.)	1,772	1,757	1,336	1.207	1,558	1,455	1.511
- 1		10.0	fi - First Crick Stress (pa)	195	515	500	530	.499	510	585
	Fiber Denase Walards		fa - Peik Stress (psi)	:515	545	.530	594	.320	555	540
feit vs. Pfeir Design			(15) - Stress at L (600 (psi)	185	238	144	185	165	175	190
I summer		f (19) ether - Shress at L/150 (psi)	1.56	150	115	-148	03	125	130	
		This - Toughness (in-fis)	280	334	2(0	250	.250	250	267	
	A A A A A A A A A A A A A A A A A A A	alar-i	france of France (pril)	194	226	185	181	-135	167	192
			$\mathcal{B}_{T,\text{chi}}^{1,S2} \approx \beta e_{\text{trans}} (2s)$	342	43.9	310	344	31.9	35.9	37,9

