

Performance – Key Reason for Use

Vol. 33 PROCEEDINGS OF THE AMERICAN CONCRETE INSTITUTE

JOURNAL of the AMERICAN CONCRETE INSTITUTE

7400 SECOND BOULEVARD, DETROIT, MICHIGAN MAY-JUNE 1937

Properties of Cements and Concretes Containing Fly Ash*

BY RAYMOND E. DAVIS¹, ROY W. CARLSON², J. W. KELLY³, AND HARMER E. DAVIS⁴ MEMBERS AMERICAN CONCRETE INSTITUTE

Nominal Glass Composition					
	Soda Lime Glass			E Glass	
	Bottle Glass	Plate Glass	Display Glass	E-GIASS	
SiO ₂	71	71	63	60	
Al ₂ O ₃	1.8	0.4	18	12.5	
Fe ₂ O ₃	0.6	0.4	0.0	0.4	
B ₂ O ₃	0.01	0.02	2.0	0.0	
MgO	0.90	3.9	2.5	2.9	
CaO	11	9.3	0.1	21	
Na ₂ O	13	13	13	0.75	
K ₂ O	0.5	0.05	0.0	0.06	

ASR Risk Mitigation - ASTM		
Designation: C1778 – 16		
Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete ¹		
Performance Based Approach		
Prescriptive Approach		
 Limit alkali loading, or 		
– Use SCMs		

