

Purpose of Fibers in Bridge Decks

 The stated manufacturer purpose of the non-metallic fibers is for controlling plastic shrinkage cracks in concrete (micro fibers) and to provide increased residual flexural strength in the concrete (macro fibers).

 Image: Construction of the state of the

Fiber Requirements for Bridge Decks							
 Type III fibers in accordance with ASTM C1116. Minimum dosage rate of 4 lbs/cy Combination of micro and macro non-metallic fibers In all cases the trial placement with the contractor-designed mix will be required to demonstrate slump, air loss, and workability 							
Test	Requirement	Test Method					
Equivalent Flexural Strength Ratio (RDT,150)	Minimum of 25%	ASTM C1609					
Crack Reduction Ratio (CRR)	Minimum reduction >85%	ASTM C1579					
Test beam specimens when the concrete strength is between 3500 and 4500 psi.							

- 2 inch diameter or greater conglomerate of fibers at the point of placement.
- Any balling more prevalent than 1 location in 20 CYDs will be considered a failed trial placement.
- Ensure the manufacturer's technical representative is available by phone or in person to troubleshoot fiber inclusion into the mix during the trial placement and bridge deck placement.

Non-metallic Fibers (Bridge Applications)					
Product	Non-metalli Manufacturer	turer (bc.v.vd) Fibers *		Approval Date	
Advantage	GRT	4	1&2	7/16/18	
FiberForce 650	ABC Polymer	4	1&2	9/13/18	
MasterFiber MAC 360 FF	BASE	4	1 & 2	9/13/18	
TUF-STRAND SF	Euclid	4	1&2	9/13/18	

Snapshot from https://youtu.be/GmrP8G46_v4 Courtesy Greg Bauer, CPAM

Why build a jointless roundabout?

- District 7 Mankato Materials Engineer contacted the Concrete Office to discuss the idea of constructing a Continuously Reinforced Concrete(CRC) Roundabout
- · Goal was to not worry about jointing pattern
- Concern about cost and constructability
- Presentation at a National Concrete Consortium meeting discussing FRC roundabouts prompted the idea to build FRC roundabout without joints
- Lots and lots of discussion...

Quality Control Plan

Provide a Quality Control Plan for incorporation of synthetic fibers into the concrete mixture which includes the following:

- Identify dedicated personnel involved in introduction of synthetic fibers to mix
- Proposed method for adding the synthetic fibers into the mixer to ensure uniform distribution and random orientation of the fibers throughout the concrete mixture
- Mitigation strategies needed if unmixed fiber balls are identified after concrete mixing or during concrete placement.

Placement

- Plan to place the FRC inside the isolated circle of the roundabout in one continuous placement.
- Provide active crack control (notch) on the outside edge of the roundabout:
 - 15 inch long saw cut,
 - At a depth of 1.5 inch, and
 - Every 4 feet on the outside edge of the roundabout.
- Seal the active crack control (notch) saw cuts using hot pour

Fiber Reinforced Concrete Roundabout

TH 63 5" Whitetopping with fibers

TH 63 5" Whitetopping with fibers

• Croell tried 3 different fibers

- Forta Concrete Fiber Forta Ferro One Macro
 - Virgin Copolymer/Polypropylene
 - Monofilament/Fibrillated Fiber System
- Grace Construction Products Strux 90/40 Synthetic Macrofiber
- Mapei/GRT Advantage Macrosynthetic Fiber
 - Embossed tape fiber comprised of a blend of polypropylene and polyethylene resins

<section-header> Sawing Through Transverse Joints Fully Important to Note: MN specs require sawing all the way through edge IA specs do not I requested Croell saw all the way through edge for TH 63 project Not sure if it made a difference but I don't think it hurt

Table 1 – Summary Test Results – ASTM C1609 – 28 days						
	Set ID	5 pcy	8 pcy	11.7 pcy		
Specimen Dimension	Width (in.)	6.15	6.10	6.20		
	Depth (in.)	6.05	6.05	6.00		
Initial Deflections	δ_1 - Deflection at First Crack (in.)	0.0017	0.0019	0.0019		
	δ_{P} - Deflection at Peak Load (in.)	0.0019	0.0020	0.0021		
Loads	P1 - First Crack Load (lbf.)	7,928	9,011	8,257		
	Pp - Peak Load (lbf.)	8,109	9,433	8,866		
	P ¹⁵⁰ ₆₀₀ - Load at L/600 (lbf.)	1,492	2,522	3,782		
	P ₁₅₀ - Load at L/150 (lbf.)	1,322	2,437	3,528		
Stress	f_1 - First Crack Stress (psi)	635	730	660		
	f_P - Peak Stress (psi)	650	765	710		
	f ¹⁵⁰ ₆₀₀ - Stress at L/600 (psi)	120	205	305		
	f_{150}^{150} - Stress at L/150 (psi)	105	195	285		
Toughness	T ¹⁵⁰ - Toughness (in-lbs)	187	327	460		
	$f_{T,150}^{150}$ or Fe_{3mm} (psi)	126	221	307		
	$R_{T,150}^{150}$ or Re_{3mm} (%)	20.1	30.3	46.6		

Thank you! Any Questions?