

MnDOT High Performance & Contractor Mix Designs

Maria Masten, P.E MnDOT Concrete Engineer Minnesota Concrete Council TRANSPORTATION February 15, 2018

Today

- Why High Performance Concrete
- High Performance Bridge Mix Designs
- Transition to Contractor Mix Designs
- Strength as a Requirement
- FHWA Performance Engineered Concrete Mix Designs Initiative
- The Future of Testing and Acceptance of Concrete

MAP-21 Per	formance Targets
 Proposed pavement 	 Proposed bridge
condition measures	condition measures
 % of Interstate pavements in Good condition % of Interstate pavements in 	 % of NHS bridges by deck area in Good condition % of NHS bridges by deck area in Poor condition
 Poor condition % of non-Interstate NHS pavements in Good condition % of non-Interstate NHS pavements in Poor condition 	Maintain bridges on the NHS to have no more than 10% of the overall bridge deck area of bridges classified as
No more than 5% poor for	Structurally Deficient

the Interstate System

High Performance Bridge Mix Designs

High Performance Bridge Deck Mixes

Performance Mix Designs - All Bridge Deck Mixes

- Contractor Designed
 - 3YHPC-M/3YHPC-S (monolithic/structural) with...
 - Fibers
 - Internal Curing (IC)-lightweight sand
 - Lightweight Concrete-lightweight coarse aggregates
 - Self Consolidating Concrete (SCC)

3YHPC-S/3YHPC-M								
	1able HPC-4 High Performance Bridge Deck Concrete Mix Design Requirements							
Concrete Grade	Mix Number *	Intended Use	w/c ratio	Target Air Conte nt	Maximum %SCM (Fly Ash/Slag/ Silica Fume/ Ternary)	Slum p Rang e †, <i>inche</i> s	Minimum Compressi ve Strength, f'c (28- day)	3137 Spec.
HPC	3YHPC-M 3YHPC-S	Bridge Deck — Monolithic Bridge – Structural Slab	0.35- 0.45	6.5%	30/35/5/40	1 - 4	4000 psi	2.D.2
* Provide formula a Shilstone workable The indiv † Keep the	Slab Slab Slab Slab Torvide a Job Mix Formula in accordance with 2401.2.A.7. Use any good standard practice to develop a job mix formula and gradation working mage by using procedures such as but not limited to 8-18, 8-20 gradation control, Shiktone process, FHWA 0.45 power chart or any other performance related gradation control to produce a workable and pumpable concrete mixture meeting all the requirements of this contract. The individual limits of each SCM shall apply to ternary mixtures. Yecom the consistence word the concrete uniform during entities placement.							

High Performance Bridge Deck Mixes

Performance Mix Designs - All Bridge Deck Mixes

- Contractor Designed
 - 3YLCHPC-M/3YLCHPC-S (monolithic/structural)
 - Straight Cement

No F Wor	lyash!!! king with	the KU	(Kans	as Ur	niversity	')		
	High	Performance Bri	Table F idge Deck Co	IPC-2 oncrete Mix	Design Requirer	nents		
Concrete Grade	Mix Number *	Intended Use	w/c ratio	Air Content	Cement Content	Slump Range †, inches	Minimum Compressive Strength, f'c (28-day)	3137 Spec.
	3YLCHPC-M	Bridge Deck – Monolithic		8.0%	500-			
HPC	3YLCHPC-S	Bridge – Structural Slab	0.42-0.45	±1.0%	535lbs./yd3	11/2 - 3	4000 psi	2.D.2

Additional Requirements

- Trial Batching
- Trial Placement
- Slab Placement and Curing Plan
- Pre-Placement Meeting

Transition to Contractor Mix Designs

Why Contractor Mix Designs?

• New and improved materials and technology

- Allow increased use of supplementary cementitious materials
- Allow more flexible use of admixtures
 Producers know and understand their materials better than MnDOT
- More cost effective mixes
- Transition to performance based mixes

Transfer of Responsibility

- The Contractor assumes full responsibility for the mix design and performance of the concrete.
- The Engineer determines final acceptance of the concrete for payment based on test results, satisfactory field placement and performance.

Current Mix Design Process

- Allows Producers to Submit Mix Designs meeting one of the following:
 - Level 1 Mix designs limited to a maximum of 15% fly ash with some additional conditions
 - Level 2 More innovative mix designs provided a suitable experience record or trial batching with some additional conditions

- Fabricating Cylinders
- Moist Curing Environments
- Curing and Handling Cylinders
- Transporting Cylinders
- Spec was lacking enough guidance on interpretation and acceptance of Strength Results

Contractor Provided Moist Curing Environment

 The Contract requires providing moist curing environments of adequate size and number for <u>initial and intermediate curing</u> (first 7 days) of concrete cylinders

 For each separate curing environment, provide a calibrated waterproof digital temperature recording device that records the daily maximum and minimum ambient temperatures for the previous 7 days.

Curing and Handling Cylinders

Variables Affecting Strength NRMCA Pub. 179 – David Richardson

- Among the factors influencing compressive strength of concrete as delivered to the jobsite, <u>temperature is of major</u> <u>importance</u>
 - Non-compliance to code requirements pertaining to initial curing temps contributes to strength variations of as much as 1450 psi
 - Adequate protection of cylinders during the first 24 hours after casting is essential
 - The use of a water container greatly diminished the effect of high exterior temperatures
 - The use of a curing box is greatly recommended for important project
 - High ambient temperature influence concrete temperature, and especially macro pores formation.

	Variable	Strength loss, %	Lab or field
Insufficient Consolidation	Convex ends	Up to 75	Lab
	Insufficient consolidation	Up to 61	Field
Up to 61% Reduction	Immediate freezing for 24 h	Up to 56	Field
1	Rubber cap, no restraint	Up to 53	Lab
	Weak, soft capping compound	Up to 43	Lab
	Flat particle, vertical orientation	Up to +0	Field
	Concave ends	Up to 30	Lab
	Rough end before capping	Up to 27	Field
	Seven days in field, warm temperature	Up to 26	Field
	Reuse of plastic molds	Up to 22	Lab
	Cardboard mold	Up to 21	Field
	Seven days in field at 73 F no added moisture	Up to 18	Field
	Plastic mold	Up to 14	Field
	Rough end, air gaps under cap	Up to 12	Field
	Convex end capped	Up to 12	Field
	Eccentric loading	Up to 12	Lab
	Out-of-round diameter	Up to 10	Field
	Ends not perpendicular to axis	Up to 8	Field
	Rough handling	Up to 7	Field
	Three days at 37 F, mixed at 73 F	Up to 7	Field
Excessive Tanning	One day at 37 F, mixed at 46 F	Up to 7	Field
Excessive inpping	Excessive tapping	Up to 6	Field
Up to 6% Reduction	Thick cap	Up to 6	Lab
op to overteduction	Sloped end, leveled by cap	Up to 5	Field
	Wet mixture subjected to vibrations	Up to 5	Field
	Chipped cap	Up to 4	Lab
	Reinforcing bar rodding	Up to 2	Field
	Insufficient cap cure	Up to 2	Lab
	Slick end cap	Up to 2	Lab
	Slow loading rate	Up to 2	Lab

-		
-		

Low Strengths	Variable	Strength loss, %	Lab or field
•	Convex ends	Up to 75	Lab
Palatad ta	Insufficient consolidation	Up to 61	Field
	Immediate freezing for 24 h	Up to 56	
	Rubber cap, no restraint	Up to 53	Lab
Curing Iccups	Weak, soft capping compound	Up to 43	Lab
Luring issues	Flat particle, vertical orientation	Up to +0	Field
0	Concave ends	Up to 30	Lab
	Rough end before capping	Up to 27	Field
	Seven days in field, warm temperature	Up to 26	Field
	Reuse of plastic molds	Up to 22	Lab
7. data in Caldada and Tanana	Cardboard mold	Up to 21	Field
7-days in Field warm lemps	Seven days in field at 73 F no added moisture	Up to 18	Field
26% Strength Reduction	Plastic mold	Up to 14	Field
	Rough end, air gaps under cap	Up to 12	Field
	Convex end capped	Up to 12	Field
7-days in field at 73°F	Eccentric loading	Up to 12	Lab
	Out-of-round diameter	Up to 10	Field
w/o moist cure environment	Ends not perpendicular to axis	Up to 8	Field
18% Strength Reduction	Rough handling	Up to 7	Field
	Three days at 37 F, mixed at 73 F	Up to 7	Field
	One day at 37 F, mixed at 46 F	Up to 7	Field
	Excessive tapping	Up to 6	Field
	Thick cap	Up to 6	Lab
	Sloped end, leveled by cap	Up to 5	Field
	Wet mixture subjected to vibrations	Up to 5	Field
	Chipped cap	Up to 4	Lab
	Reinforcing bar rodding	Up to 2	Field
	Insufficient cap cure	Up to 2	Lab
	Slick end cap	Up to 2	Lab
	Slow loading rate	Up to 2	Lab

2017 Lessons Learned

- Curing and Handling Cylinders
- Variability within a set of 3 cylinders
- Variability of a mix design on a single project
- Dispute Resolution Process

2018 Specification 2461

Strength Variability Set of 3 Cylinders

- If 1 of the set of 3 cylinders shows variability >10% outside of the initial calculated three cylinder average strength, the report software will average the remaining 2 cylinders and report as the 28-day strength.
- Example: 3500psi + 4000psi + 4200psi = 3900psi average
 - New Average 4000psi + 4200psi = 4100psi

If 2 or more of the set of 3 cylinders shows a variability >10% outside of the initial calculated average strength, the Engineer will use all 3 cylinder results to calculate the 28-day strength.

Example: 3200psi + 4000psi + 4500psi = 3900psi average

Erroneous Cylinder Test Results

- Cylinders remain in field greater than 7-days. (Bring cylinders into lab at least once per week!)
- $\circ\mbox{Cylinders}$ delivered to the lab without lids and have dried to a whitened state
- oImproper handling/field curing of cylinders
- Improper testing of the cylinders (not taken to complete failure)
- Cores taken from deficient structure have shown adequate strength... If cores pass Agency pays coring and third party testing.

FHWA Performance Engineered Concrete Mix Designs Initiative

Is this something new?

- MnDOT has participated in the following:
 - FHWA ETG on development of Performance Engineered Mixes (2013-now)
 - Champion States Group on validation of PEM performance tests (2015-2017)
 - AET supported with PEM field testing
- AASHTO PP84-17, "Performance Engineered Concrete Pavement Mixtures"

	What is PEM?			
<u>P</u> erformance – Choosin	ig what we need			
Engineered – Delivering what is needed				
<u>M</u> ixtures – Let's engineer our mixtures to perform				
	Gray			
	Strong			
Slide from Peter Taylor				

A Better Specification

Require the things that matter

- ✓ Transport properties (everywhere)
- ✓ Aggregate stability (everywhere)
- ✓ Strength (everywhere)
- ✓ Cold weather resistance (cold locations)
- ✓ Shrinkage (dry locations)
- ✓ Workability (everywhere)

P. Taylor, 2017

Critical Properties

Transport properties (permeability)

- ✓ All deterioration mechanisms involve fluid movement
- ✓ Keep water out = longer life
- ✓ Measurement has been difficult
 - ✓ Boiled water
 - ✓ RCPT

Moisture penetration

	w/cm	RCPT Value	Formation Factor
Test method	-	AASHTO T 277	AASHTO T 358
Value	0.45	< 2000	> 500
Approval?	Yes	Yes	Yes
Acceptance?	Yes	Yes	Yes

What is the formation factor?

- It is a true measurement of how hard it is for ions to move through concrete.
- If we can get this information then it will be much easier to predict moisture penetration into concrete and the subsequent long term performance.

Critical Properties

Aggregate Stability

✓ If aggregates expand = damage

✓ Alkali aggregate reaction✓ D-Cracking

Critical Properties

Strength

- ✓ Strong enough (But not much more) It comes along for the ride
- ✓ Beware of shrinkage, high heat

P. Taylor, 2017

Strength						
			Choose one!			
	Flexural	Compressive				
	Strength	Strength				
Test method	AASHTO T 97	AASHTO T 22				
Value	4.1 MPa	24 MPa				
value	600 psi	3500 psi				
Approval?	Yes	Yes				
Acceptance?	Yes	Yes				
Acceptance ? Yes Yes						

How does it work?

- You use multiple pressure steps instead of one.
- The meter measures the air volume and the bubble size distribution
- The test takes 5-10 minutes

Dimension changes and cracking from drying shrinkage				
Test method Value Time Approval? Acceptance?	Ring Test AASHTO T 334 crack free 180 days Yes No	Dual Ring AASHTO TP363 σ < 60% f ¹ r 7 days Yes No	Modeling - 5, 20, 50% cracking prob Yes No	

Key Component - Quality Control

- Why don't we track how our concrete varies?
 - Unit weight
 - Air content/SAM
 - Water content
 - Formation Factor
 - Strength
- This is important information that we are ignoring.
- PEM will provides guidance for QC
 - Testing targets, frequency, and action limits
 - Guidance will expand on this

Slide from Tom Cackler

PEM	MnDOT	Spirit of PEM
Strength	Maximum w/c ratio Incentive	х
Reduce Cracking	 Optimized gradations Incentive Increased SCM's Maximum w/c ratio Incentive 	x
Durability**	 Optimized gradations Incentive Increased SCM's Maximum w/c ratio Incentive Fresh Air Content** 	x
Transport Properties**	Optimized gradations Incentive Increased SCM's Maximum w/c ratio Incentive Permeability/Resistivity**	х
Aggregate Stability	Aggregate Quality Incentive	х
Workability	Contractor Controlled	х

Minnesota Department of Transportation (MnDOT) vs. Performance Engineered Mixes (PEM)

19

The Future of Testing and Acceptance of Concrete

What Research has MnDOT done?

2013 – present ~ Participation in Multi-State Pooled Funds

2015 -2016 ~ Contracted with American Engineering Testing to use SAM and Box Testing on paving projects (2 - 4 tests per project)

2017 ~ MnDOT Grad Engineer (6 to 8 SAM tests per project)

Summer of 2017 – MnDOT SAM Testing

- Feasibility of the SAM in the Field
 - Test out the additions to the SAM
- Compare to current Pressure Meter
- Test 2 SAM's at the same time

• Compare SAM # to Hardened Air

• Write a shadow specification

Use of SAM for Trial Batching

• AET Batched multiple mix designs for MnROAD Reconstruction this summer

- All materials the same
 - 1 batch failed the SAM testing, All other mixes passed

Optional Tagline Goes Here | mndot.gov/

- Rebatched using the same materials SAM failed
- Removed the VMA and the SAM passed
- Why? Not sure

2/15/2018

63

Use of SAM for Extended Delivery Time Project

- MnDOT specifications require concrete placement within 90 minutes of batching with no additional water at 60 minutes
- Allow testing to extend delivery to 120 minutes • Trial/Field Batch
 - Plastic and Hardened Air Required

What's Next for Super Air Meter?

- Get the SAM in the Contractors Hands! • Focusing on Paving First
- FHWA Equipment Loan Program
 MnDOT has requested 3 or 4 SAMs for use during the 2018 season

SAM Shadow Specification

- Plastic Air Content Target 7% (+2%/- 1.5%)
- SAM Number (Information Only)
 - \bullet < 0.25 and minimum air content of 4.0%
 - > 0.25 to < 0.30 make adjustments
 - \geq 0.30 immediately sample the concrete from the same location and fabricate one (1) 4 in x 8 in cylinder.

MnDOT SAM Implementation Plans

- 2019 Let pilot paving projects using a combination of plastic air content and SAM
- 2020 Full implementation of SAM Specifications on paving projects
- 2019 Start looking at Ready-Mix focusing on bridge decks

What's Next for PEM Concrete Paving?

• Applied for \$100,000 FHWA Incentive Program to Implement Performance Engineered Mix Designs for Concrete Paving

- Will add to a 2018 concrete paving project by Change Order
- FHWA Mobile Testing Lab to come to paving project in Summer 2018
- FHWA Quality Workshop in Fall/Winter 2018
 30-40 participants (50% Agency/50% Industry)

PEM – Mix Design Evaluation

• MnDOT doesn't currently require trial batching of the concrete mix design. We would require trial batching specifically for this project. We would require SAM, Maturity for Flexural Strength, Box Test, VKelly, Unit Weight, Bucket Test or CaOXY test (one of the tests that relates to the formation factor and critical saturation). This is intended to be SHADOW Testing.

\$40,000

PEM – Acceptance Tests

• Section 6.3 Strength – I prefer not to put a strength requirement into the contract as I feel that is a step backward for MnDOT Specifications.

\$20,000

PEM – Acceptance Tests

 Section 6.4 Shrinkage – I do not have concerns of shrinkage or curling and warping and do not want to specify anything in this category. I have talked to the industry about 25 or 26% paste contents. We currently provide an incentive for optimized aggregates (tarantula curve) and would continue to utilize that incentive.

\$20,000

PEM – Acceptance Tests

 Section 6.5 Durability – MnDOT would use the Super Air Meter and the SAM spec (MnDOT currently uses the Type B Pressure Meter with an air content range). I would likely increase the SAM from 0.20 to 0.25 and reject at 0.30 which is consistent with Tyler Ley work and recommendations. <u>This is intended to be SHADOW</u> <u>Testing.</u> Through these incentives funds, it would be desired to purchase 1 or 2 SAMs not to exceed \$5000.00.

\$20,000

PEM – Acceptance Tests

 Section 6.6 Transport Properties – MnDOT would specify a maximum w/c ratio and use the new w/c device currently in development by Oklahoma State (MnDOT currently uses AASHTO T318 microwave oven test to verification of the w/c ratio). MnDOT has paid OSU \$10,000 for this device. MnDOT will continue to offer a w/c ratio incentive/disincentive. <u>This is intended</u> to be SHADOW Testing.

\$20,000

PEM – QC Plans

- MnDOT currently requires QC Plans for certain items on concrete paving projects including anchoring dowel bar baskets and cold weather protection plans.
- MnDOT Design Build projects currently require a comprehensive QC plan, however I do not think it is as rigorous as is recommended in PP84. We would require a plan as outlined in Section 8 of PP84.

\$20,000

PEM – Control Charting

MnDOT currently charts the following in excel spreadsheets:

- Air Content (before and after the paver)
- Composite Gradations Job Mix Formulas (moving average of 4 on each sieve, individual composite gradations against the tarantula curve)
- Moisture Content (%) and W/C Ratio
- MnDOT would add the following charts for this project: S20.000
- Unit Weight (already recorded, just not charted)
- SAM Number (we already created a spreadsheet for the SAM testing) this would be in addition to the Air Content charting
- Water Content already charting
- Formation Factor once it is determined as to what we are measuring, we will create a chart
- Strength we will create a chart to record flexural strength tests

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

MCT – Conventional Tests

- ≻Temperature
- ≻Slump
- ≻Air Content (Type B)
- ≻Strength
- ➤ Compressive
- Flexural
- > Split Tensile
- Elastic Modulus and Poisson's ratio

MCT – Durability Tests

- > Super Air Meter (SAM)
- > Surface Resistivity
- > Rapid Chloride Permeability
- > Calorimetry
- Microwave Water Content > Coefficient of Thermal Expansion

HIPERPAVE software

Some closing thoughts...

• Further development of performance mix designs will evolve...the exciting thing is technology is getting to the point where we will have tools that can give us better indications of the long term quality of the concrete...

DEPARTMENT OF TRANSPORTATION

Thank you Questions?

Maria Masten

maria.masten@state.mn.us 651-366-5572