"Crack-Free" Repair Materials ... Are We There Yet ?

Minnesota Concrete Council

Frank Apicella BASF Corp - Construction Chemicals February 16, 2012

- Articulate the challenges that lead to premature failure of concrete repairs
- Understand the repair industry's strategy to improve quality and durability of concrete repairs
- Use performance based specifications to generate better repairs
- Properly assess the benefits of the newest ASTM test method for determining crack resistance in repair materials

The Challenge with Repairs

A little more than 50% of repairs performed on the Corps structures are performing satisfactorily, which is an unacceptable rate.

US Army Corps of Engineers®

Most repairs don't last

Most Repairs Don't Last

- BRE Studies (UK)
- Survey of 215 structures
- 20% or repairs unsatisfactory within six years
- 70% of repairs unsatisfactory within 10 years

Is this acceptable performance?

http://projects.bre.co.uk/conrepnet/pages/default.htm

Why Do Repairs Fail?

Material performance

Performance of Repairs

Causes: Design, Installation, Materials

Source: US Army Corps. of Engineers REMR-CS2 Report

The #1 Problem with Repairs

"Three certainties in life: death, taxes, and concrete will crack"

Modes of Repair Failure

Design Challenges for Engineers

- Project assessment
- Product selection
- Product comparison
- Specifications
- Project control

Installation Challenges for Contractors

- Correct product selection
- Surface preparation
- Mixing
- Placement
- Finishing
- Skilled labor

Material Challenges for Manufacturers

- R&D expertise
- R&D cost recovery
- Formulation design balancing physical & handling properties
- Competitive environment

The Industry Responds

Cross industry cooperation

- Every discipline in restoration
 - Engineers, researchers
 - Contractors, owners
 - Manufacturers, academics

Establish goals to improve

- Concrete repair & protection
 - Efficiency
 - Safety
 - Quality

Vision 2020 A Vision for the Concrete Repair, Protection and Strengthening Industry

Blue Print for the Industry

- 1. Mechanism for industry cooperation
- 2. Speed process of document creation
- 3. Create repair code

5

- Performance based specifications
- Improve cracking resistance
- 6. Worker friendly materials and methods
- 7. Performance modeling system
- 8. Industry strategic research plan
- 9. Increase industry professionals
- 10. Better contract documents
- 11. Owner education tools
- 12. Condition assessment standards
- 13. Special repair systems

Vision 2020 A Vision for the Concrete Repair, Protection and Strengthening Industry

ICRI Data Sheet Protocol

Data Sheet Protocol provides:

- Logical
- Standardized
- Reporting of repair material information

To avoid:

- Design errors
- Improper material selection
- Installation errors
- Failed repairs

ACI / ICRI Data Sheet Protocol Physical & Durability Properties

INTERNATIONAL CONCRETE REPAIR INSTITUTE

- Bond strength
- Compressive strength
- Direct tensile strength
- Length change (shrinkage)
- Modulus of elasticity
- Compressive creep
- Cracking resistance
- Flexural strength

- Freezing and thawing resistance
- Scaling resistance
- Rapid chloride permeability

If repairs crack all other properties are compromised

oride ponding

fate resistance

emical resistance

- Splitting tensile strength
- Coefficient of thermal expansion

Performance Requirements

- Guide for all types of repair materials
- Different tests & properties
- Range of values
- State-of-the-art

What should be reported

ACI 364.3R-09

State-of-the-art

Solving the Problem of Cracking

Shrinkage vs Tendency to Crack

ASTM C 157 "Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete"

Autogenous Shrinkage

Plastic Shrinkage

Fresh Mortar

Initial Set

Final Set

TENSILE STRAIN/Time

The Answer

- Its more than shrinkage
- Materials with low shrinkage can and do crack
- The answer is balance

How is Cracking Performance Defined?

- Measures 4-forces of cracking
- Comparative test for materials
 - Accelerated Days in the ring do not equal days in the field
 - Shows relationship between materials

Ring dimensions				
Diameter, mm (in.)		Thickness		Researchers and
External a	Internal b	mm (in.)	a/b	country (reference)
175 (6.9)	125 (4.9)	34 (1.3)	140	Carlson and Reading, U.S. (16)
405 (15.9) 125 (4.9)	325 (12.8) 100 (3.9)	80 (3.1) 25 (1.0)	1.23 1.25	Coutinho, Portugal (17)
70 (2.8)	50 (2.0)	20 (0.8)	1.40	Popov, Opentliker, and Derugin, USSR (18)
40 (1.6)	30 (1.2)	—	1.33	Stolnikov and Litvinova, USSR (18)
57 (2.2)	27 (1.1)	20 (0.8)	2.11	Lermit, France (18)
100 (3.9)	68 (2.7)	32 (1.3)	1.47	Kondo, Japan (18)
660 (25.9)	508 (20.0)	102 (4.0)	1.3	Swarmy, Banduopadhyay, and Stavrides, UK (19)
374 (14.7)	304 (12.0)	140 (5.5)	1.23	Shah, Karagulor, and Sarigaphuti, U.S. (20)
155 (6.1)	115 (4.5)	50 (2.0)	1.35	Technical research center, Finland (21)
175 (6.9)	112.5 (4.4)	50 (2.0)	1.55	Fosroc, UK (22)
72 (2.8)	37 (1.5)	35 (1.4)	1.95	Golubkov, USSR (18)
190 (7.5)	90 (3.5)	100 (3.9)	2.11	Guidelines for Production of Lightweight Concrete Structures, USSR (23)
318 (12.5)	254 (10.0)	102 (4.0)	1.25	WDP/SPS, U.S. (24)

AASHTO Restrained Ring Method

Work done by B. Pease, A. Hossain and J. Weiss (Purdue University)

- AASHTO ring is not sensitive enough for rapid comparative evaluation of materials due to degree of restraint
 - AASHTO PP34-99 \rightarrow 55 60%
 - ASTM C1581 \rightarrow 70 75%
- Stress distribution peaks at the outer and inner surfaces due to thickness of mortar

ASTM C1581 - Cracking Classification

^{2003.}

ASTM C 1581 Cracking Potential

- Measures 4-forces of cracking
- ASTM requires test run for 28 days or until specimen cracks
- ICRI and ACI DSP requires test run for 60 days or until specimen cracks

How ASTM C1581 Works

What About "Regular Concrete"?

ASTM C1581 Results

Industry Ring Test Performance

State of the industry cracking potential testing

- ASTM C1581 requirements driving innovation
- 3rd party testing provides validation, assurance and credibility

Review

- Concrete is a versatile, durable material
- Maintenance and restoration increases the useful life of concrete
- The repair industry's has a blue print to improve quality and durability of concrete repairs
- Performance based specifications like the ICRI and ACI DSP can lead to better repairs
- ASTM C1581 is the most reliable method for determining crack resistance in repair materials

Predicting Cracking Performance

Material Design and Selection ... Compromise and Balance

Repairs that Don't Crack Last Longer

DSP can keep you in control

- Reduce cracking
- Clear performance based specifications
- Quality control on site

How to improve your repairs

- Implement DSP guidelines
- Require 60 day crack free performance in Ring Test
- Educate and follow industry guidelines

"Crack-Free" Repair Materials ... Are We There Yet ?

- Design errors
- Installation problems
- Material performance
- Loading effects
- Environmental effects
- ... and other issues can STILL cause cracking.....

Raise the Bar and Drive Innovation

... Cracking is not acceptable in concrete repair either

Thank You!

Any Questions?

Frank Apicella BASF