

Outline

- Why alternative cements?
- Geopolymer cement
 - Geopolymerization
 - Materials
- My research
 - Waste glass
 - Glass-based geopolymers
- Geopolymer Research at UMD
- The future

	JUST KIDDING!	
	JOST KIDDING.	
DULUTH		4

OPC Hydration	
TIPE BILLITE	
	_
OPC Hydration	
THE RELIEF	
Laulutu J	
OPC Hydration	
DULUTH 12	

What is a geopolymer?

A binder ...

- that results from the alkali activation of an aluminosilicate source,
- can have a significantly **smaller carbon footprint** than OPC,
- and has demonstrated similar or increased performance in terms of mechanical and durability properties as compared to OPC.

(Davidovits 2008)

Great Pyramid of Giza

Some believe blocks in the Great Pyramid of Giza were cast from an ancient geopolymer formula

(Davidovits 2008)

Penefits of GPC • Lower carbon footprint than OPC • Does not require the calcination of limestone • Reduced or zero fuel combustion necessary • High volume usage of industrial byproducts • Mechanical properties • High-early strength • High-ultimate strength • Stronger interfacial transition zone (ITZ) **Both AMPAN AMPAN

Materials

- Aluminosilicate source
 - Reactive Si and Al
 - Amorphous structure
 - Physically and compositionally homogeneous
 - Hard

- Alkali activating solution
 Alkali hydroxide (NaOH, KOH, etc.)
 Alkali silicate (sodium silicate, etc.)

Glass Recycling Hurdles

- Materials processing costs
 - Color Separation
 - Flint (clear)
 - Emerald (green)
 - Amber (brown)
 - Contaminants
 - Ceramics, pottery, clay pots
 - Mirrors, windshields, windows
 - Pyrex, dishes, glasses
 - Light bulbs
 - ${\boldsymbol{\cdot}}$ Stones and ${\sf dirt}$
- Metal or plastic caps

(Glass Packaging Institute 2012)

Preliminary Glass Mixtures

- Variables
 - Glass particle size
 - Fine
 Coarse
 - NaOH concentration
 - 5M NaOH
 - 10M NaOH
 - Curing temperature
 - 40°C 80°C

Typical Stoichiometry

	Fly Ash	Metakaolin	Soda-lime Glass
SiO ₂	39	53	72
Al ₂ O ₃	20	43	2
Ca0	14	<1	12
Na ₂ O	6	0	13

- Fly ash or metakaolin geopolymer
 Si/Al = 2-5
 Na/Al = 1
- Soda-lime glass geopolymer Si/Al = 50 Na/Al = 20

(Shi, Fernandez Jimenez, et al. 2011)

Experimental Testing

- Compressive strength
- Microstructure
 - Fracture surfaces (SE ESEM)
 - Polished sections (BSE ESEM)
- Composition
 - EDS
- Compare actual to bulk
- Degree of reaction
- XRD
- Calorimetry

Unreacted Particles April 100 Di NO Ap

Variation in Glass Composition • Effect of the activator • Compressive strength • Water stability • Leaching of alkalis • Stoichiometric design • Microstructural analysis

Water-solids Ratio in GPC Effect of Water-Solids Ratio on the Compressive Strength, Degree of Reaction, and Microstructural Characterization of Fly Ash-Waste Glass-Based Geopolymers 7-Day Compressive Strength vs. W/S Ratio

Sustainable Sidewalks

- UMD Campus
- 16 different mixtures
 - Varying amounts of fly ash and silica fume
- Geopolymers coming soon
- Thanks to Arrowhead Concrete

Alternative Cements at ACI

- Innovation Task Group (ITG-10) Alternative Cements
 - Chair: Larry Sutter
 - Secretary: Mary Christiansen
- Submitted draft of Report on Alternative Cements to TAC in Fall 2016
- Likely to become a full committee

American Concrete Institute

Hurdles

- Industry acceptance and education
- Codes and specifications are written primarily for portland cement concrete
- Testing procedures
- ullet Long-term durability testing needed
- Heat cure
- \bullet Firmer understanding of geopolymerization

THANK YOU.	
Mary Christiansen University of Minnesota Duluth muchrist@d.umn.edu	
ALDUTE 23	