MCC Optimum Durability Study

Phase I Results

Performance Specification

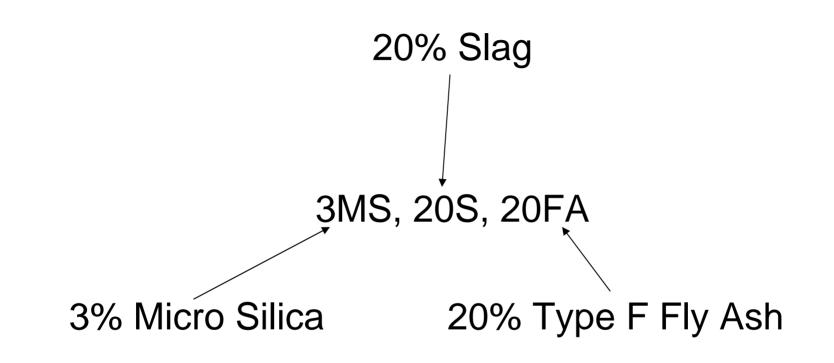
A Guide for the MCC Research Program on Optimum Durability

- Compressive Strength Req. f 'c=3,000 psi/30 hours
 - f 'c=6,000 psi/28 days
- Except for the "control mixes", all test mixes should include a minimum of 30% (total) recycled pozzolans as a Portland cement replacement. The maximum replacement of recycled pozzolans should be limited as follows:
 - Fly Ash 35%
 - Slag 35%
 - Micro Silica 4%
- The total pozzolan content shall be limited to 658# (7 bag mix)
- The maximum water cement ratio shall be .42
- The aggregate shall be well graded with a maximum size of 1 1/2". The aggregate gradation must be consistent throughout all batching. All large aggregate shall be limestone. (No less than 55% of the aggregate (by weight) shall be retained on the #4 sieve.)
- All test mixes shall be air entrained to 6%± 1 %. The selected AEA shall be consistent throughout all batching.
- Corrosion inhibitors shall <u>not</u> be added to any of the test mixes
- All WRA's shall be a polycaboxilate and shall be a consistent brand throughout all batching.
- The performance criteria for permeability shall be as follows:
 - 6 months \leq 1000 coulombs
 - 12 months \leq 500 coulombs
- The performance criteria for drying shrinkage shall limit the average length change in 6 months to -0.050%.
- The performance criteria for deicing scaling is that the blended pozzolan test mixes shall perform as well or better than the control mixes which contain only the Portland cement.
- There shall be no autogenous shrinkage cracking.
- There shall be no plastic shrinkage cracking.

What is Concrete Durability?

- Durability of concrete is defined as its ability to resist weathering action, chemical attack, abrasion, or any other process of deterioration.
- Durable concrete will retain its original form, quality, and serviceability, when exposed to its service environment.
- Concrete durability is largely dependent on the ease with which liquids and/or gasses enter into and move through the concrete. This is commonly referred to as the permeability of concrete.

MCC Durable Cementitious Study


	Batch No.	% Cement	% Micro Silica	% Slag	% Fly Ash
1.	PC	100	0	0	0
2.	30S	70	0	30	0
3.	30FA	70	0	0	30 (F)
4.	30S, 1MS	69	1	30	0
5.	30FA, 1MS	69	1	0	30 (F)
6.	30S, 3MS	67	3	30	0
7.	30FA, 3MS	67	3	0	30 (F)
8.	PC	100	0	0	0
9.	30CA	70	0	0	30 (C)
10.	30CA, 1MS	69	1	0	30 (C)
11.	30CA, 3MS	67	3	0	30 (C)
12.	20S, 20FA	60	0	20	20 (F)
13.	20S, 20CA	60	0	20	20 (C)
14.	1MS, 20S, 20FA	59	1	20	20 (F)
15.	1MS, 20S, 20CA	59	1	20	20 (C)
16.	3MS, 20S, 20FA	57	3	20	20 (F)
17.	3MS, 20S, 20CA	57	3	20	20 (C)
18.	*1MS, 30CA	69	1	0	30 (C)
19.	**30CA	70	0	0	30 (C)

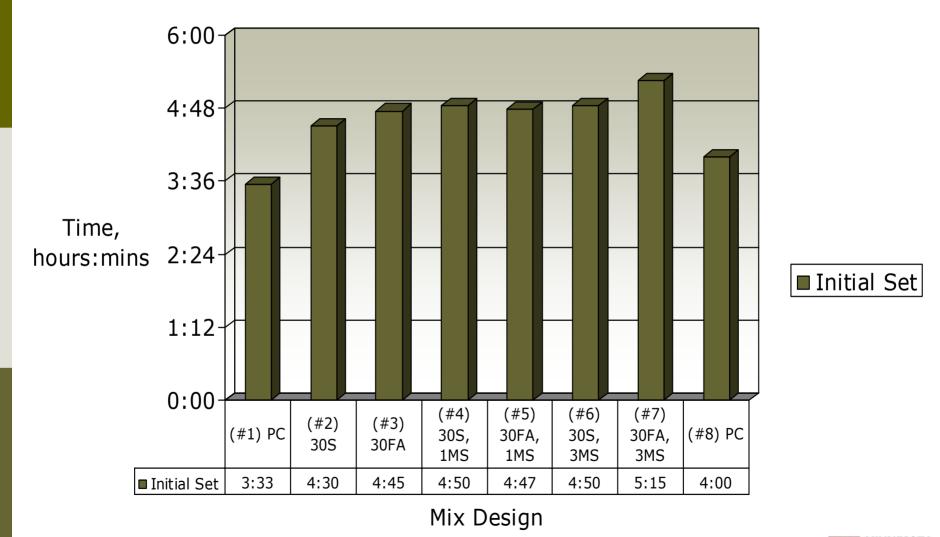
*Batch 18 is the same as Batch 10, except no DCI

** Batch 19 is the same a Batch 9, except the water cementitious ratio is 0.50

Identification Scheme

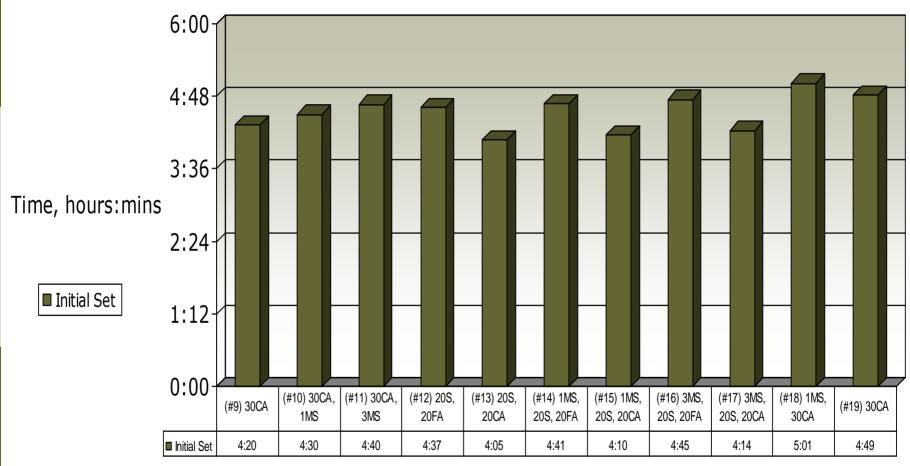
Batching Data

		Batch No.							
	1 PC	2 30S	3 30FA	4 30S, 1MS	5 30FA, 1MS	6 30S, 3MS	7 30FA, 3MS	8 PC	
% Micro Silica	0	0	0	1	1	3	3	0	
% Slag	0	30	0	30	0	30	0	0	
% Fly Ash	0	0	30	0	30	0	30	0	
Portland I/II (lbs)	658	461	461	454	454	441	441	611	
Micro Silica (lbs)	0	0	0	6.6	6.6	19.7	19.7	0	
Slag (lbs)	0	197.4	0	197.4	0	197.4	0	0	
Fly Ash (lbs)	0	0	197.4	0	197.4	0	197.4	0	
Total Cementitious (lbs)	658	658	658	658	658	658	658	611	
Well Graded Aggregates (lbs)	3111	3111	3111	3111	3111	3111	3111	3177	
WRA (High Range) (cwt)	5.3	5.0	4.8	5.1	5.0	4.7	4.5	5.3	
Corrosion Inhibitor (gallons)	3	3	3	3	3	3	3	3	
Total Water	263	263	263	263	263	263	263	244	
W/C	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
Air Entraining (cwt)	.9	1.2	1.1	1.2	1.0	1.0	1.1	.90	
Test Results									
Slump (in)	5	6 1⁄2	7 1⁄2	7	7	5	6	7	
Air Content (%)	6.2	5.0	6.1	6.0	7.2	5.4	7.2	6.4	
Unit Weight (lb/ft ³)	146.8	147.2	146.8	146.1	145.9	147.0	146.4	146.0	
Initial Set (hr:min)	3:33	4:30	4:45	4:50	4:47	4:50	5:15	4:00	

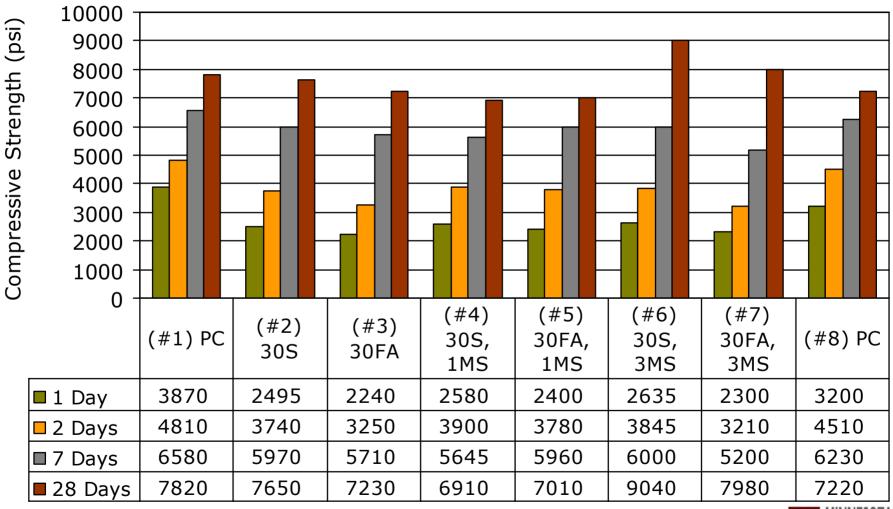


Batching Data

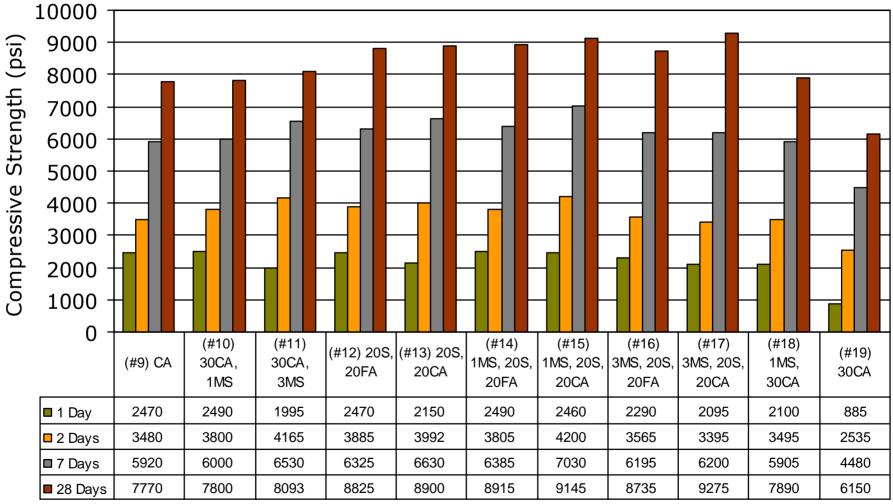
	9 30CA	10 30CA, 1MS	11 30CA, 3MS	12 20S, 20FA	13 20S, 20CA	14 1MS, 20S, 20FA	15 1MS, 20S, 20CA	16 3MS, 20S, 20FA	17 3MS, 20S, 20CA	18 1MS, 30CA	19 30CA
% Micro Silica	0	1	3	0	0	1	1	3	3	1	0
% Slag	0	0	0	20	20	20	20	20	20	0	0
% Fly Ash	30	30	30	20	20	20	20	20	20	30	30
Portland I/II (lbs)	461	454	441	395	395	388	388	375	375	454	461
Micro Silica (lbs)	0	6.6	19.7	0	0	6.6	6.6	19.7	19.7	6.6	0
Slag (lbs)	0	0	0	131.6	131.6	131.6	131.6	131.6	131.6	0	0
Fly Ash (lbs)	197.4	197.4	197.4	131.6	131.6	131.6	131.6	131.6	131.6	197.4	197.4
Total Cementitious (lbs)	658	658	658	658	658	658	658	658	658	658	658
Well Graded Aggregates (lbs)	3111	3111	3111	3111	3111	3111	3111	3111	3111	3111	3111
WRA (High Range) (cwt)	4.8	5.0	5.0	4.6	4.6	4.7	4.7	5.0	5.0	5.1	2.0
Corrosion Inhibitor (gal)	3	3	3	3	3	3	3	3	3	0	3
Total Water	263	263	263	263	263	263	263	263	263	263	328
W/C	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5
Air Entraining (cwt)	1.1	1.2	1.2	1.0	1.0	1.1	1.1	1.2	1.2	1.2	.9
Test Results											
Slump (in)	6 ½	6 1⁄2	5	7 1⁄2	7	7	5	7	5	4 1⁄2	8
Air Content (%)	5.0	6.2	5.0	6.5	5.1	5.4	6.0	6.2	7.1	5.0	5.5
Unit Weight (lb/ft ³)	147.3	146.8	147.5	146.0	147.0	147.2	146.4	146.8	146.1	147.3	146.8
Initial Set (hr:min)	4:20	4:30	4:40	4:37	4:05	4:41	4:10	4:45	4:14	5:01	4:49



Time of Set


Time of Set

Mix Design


Average Compressive Strength (psi)

Mix Design

Average Compressive Strength (psi)

Mix Design

Rapid Chloride Permeability Test

•History of Rapid Chloride Permeability Test:

The rapid chloride permeability test (RCP) was created in the early 1980s and was adopted by both AASHTO T 277 and ASTM:C1202.

•RCP Test:

In the RCP test, saturated 2" thick by 4" diameter concrete discs are prepared and subjected for 6 hours to direct electric current having a potential difference of 60 volts.

•Charge Passage vs. Permeability:

Based on experimental evidence, a low passage of charge in this test, on the whole, indicates low chloride permeability, and a high charge passage indicates high chloride permeability.

Chloride Permeability Based On Charge Passed

Charge Passed, Coulombs	Chloride Permeability				
>4000	High				
2000 – 4000	Moderate				
1000 – 2000	Low				
100 – 1000	Very Low				
<100	Negligible				
Source: AASHTO T227 or ASTM:C1202					

RCP Testing

						Results ombs
Batch No.	% Cement	% Micro Silica	% Slag	% Fly Ash	56 Days	6 Months
1. PC	100	0	0	0		1281
2. 30S	70	0	30	0		1066
3. 30FA	70	0	0	30 (F)		366
4. 30S, 1MS	69	1	30	0		606
5. 30FA, 1MS	69	1	0	30 (F)		269
6. 30S, 3MS	67	3	30	0		620
7. 30FA, 3MS	67	3	0	30 (F)		305
8. PC	100	0	0	0		1427
9. 30CA	70	0	0	30 (C)	1869	590
10. 30CA, 1MS	69	1	0	30 (C)	2519	955
11. 30CA, 3MS	67	3	0	30 (C)	1952	876
12. 20S, 20FA	60	0	20	20 (F)	1034	386
13. 20S, 20CA	60	0	20	20 (C)	986	347
14. 1MS, 20S, 20FA	59	1	20	20 (F)	707	292
15. 1MS, 20S, 20CA	59	1	20	20 (C)	1046	445
16. 3MS, 20S, 20FA	57	3	20	20 (F)	717	263
17. 3MS, 20S, 20CA	57	3	20	20 (C)	732	313
18. *1MS, 30CA	69	1	0	30 (C)	1433	538
19. **30CA	70	0	0	30 (C)	2624	893

*Batch 18 is the same as Batch 10, except no DCI

**Batch 19 is the same as Batch 8, except the water cementitious ratio is 0.50.

Altered Electrical Properties Effect on RCP Test Results

Some concretes can have altered electrical properties and can give false readings. When we compare Batch 18 to Batch 10 in our study, Batch 10 passed twice the charge as Batch 18. The tests suggests the difference in the RCP test values result from the inclusion of a Corrosion Inhibitor in Batch 18. The additional ions contributed by the inhibitor increases the passage of electrical charges during the test.

Another example of altered electrical properties which can give false reading is the use of pozzolans that tie up normally free ions within the concrete pours. The reduced ion concentration results in less charge being passed.

This is not to say that concrete with pozzolans have lower chloride permeability, but may not be as low as the rapid test indicates.

RCP Testing

					-	Results ombs
Batch No.	% Cement	% Micro Silica	% Slag	% Fly Ash	56 Days	6 Months
1. PC	100	0	0	0		1281
2. 30S	70	0	30	0		1066
3. 30FA	70	0	0	30 (F)		366
4. 30S, 1MS	69	1	30	0		606
5. 30FA, 1MS	69	1	0	30 (F)		269
6. 30S, 3MS	67	3	30	0		620
7. 30FA, 3MS	67	3	0	30 (F)		305
8. PC	100	0	0	0		1427
9. 30CA	70	0	0	30 (C)	1869	590
10. 30CA, 1MS	69	1	0	30 (C)	2519	955
11. 30CA, 3MS	67	3	0	30 (C)	1952	876
12. 20S, 20FA	60	0	20	20 (F)	1034	386
13. 20S, 20CA	60	0	20	20 (C)	986	347
14. 1MS, 20S, 20FA	59	1	20	20 (F)	707	292
15. 1MS, 20S, 20CA	59	1	20	20 (C)	1046	445
16. 3MS, 20S, 20FA	57	3	20	20 (F)	717	263
17. 3MS, 20S, 20CA	57	3	20	20 (C)	732	313
18. *1MS, 30CA	69	1	0	30 (C)	1433	538
19. **30CA	70	0	0	30 (C)	2624	893

*Batch 18 is the same as Batch 10, except no DCI

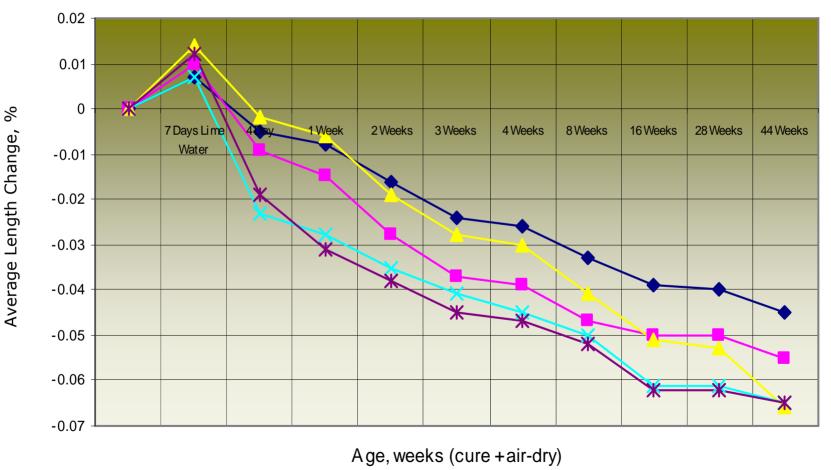
**Batch 19 is the same as Batch 8, except the water cementitious ratio is 0.50.

Drying Shrinkage Data

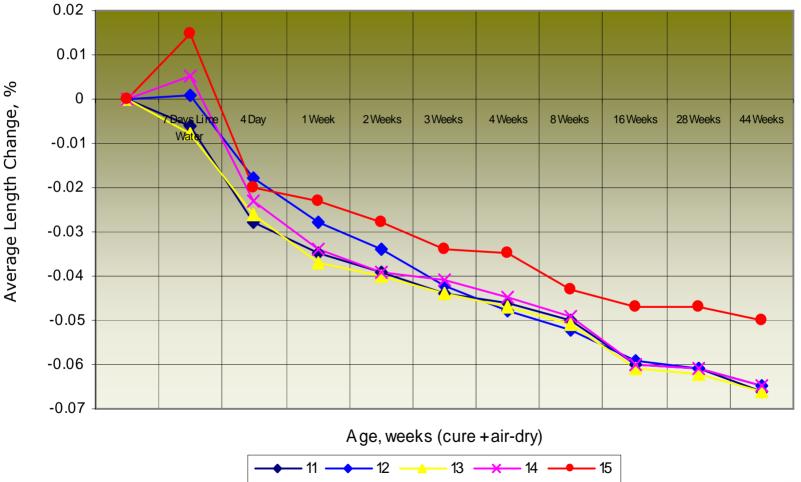
CONCRETE SHRINKAGE DATA, ASTM:C157, MODIFIED CURING AIR DRYING										
Batch No.	7-Day Lime Water	4-Day	7-Day	14-Day	21-Day	28-Day	2-Month	4- Month	6-Month	9-Month
1. PC	0.001	-0.010	-0.015	-0.022	-0.026	-0.029	-0.040	-0.049	-0.050	-0.060
2. 30S	0.009	-0.015	-0.026	-0.035	-0.039	-0.041	-0.048	-0.052	-0.053	-0.057
3. 30FA	0.008	-0.014	-0.025	-0.036	-0.040	-0.043	-0.053	-0.059	-0.068	-0.064
4. 30S, 1MS	0.007	-0.015	-0.024	-0.034	-0.039	-0.042	-0.050	-0.056	-0.057	-0.063
5. 30FA, 1MS	0.008	-0.010	-0.018	-0.025	-0.033	-0.037	-0.045	-0.048	-0.048	-0.053
6. 30S, 3MS	0.007	-0.005	-0.008	-0.016	-0.024	-0.026	-0.033	-0.039	-0.040	-0.045
7. 30FA, 3MS	0.010	-0.009	-0.015	-0.028	-0.038	-0.039	-0.047	-0.050	-0.050	-0.055
8. PC	0.014	-0.002	-0.006	-0.019	-0.028	-0.030	-0.041	-0.051	-0.053	-0.066
9. 30CA	0.007	-0.023	-0.028	-0.035	-0.041	-0.045	-0.050	-0.061	-0.061	-0.065
10. 30CA, 1MS	0.012	-0.019	-0.031	-0.038	-0.045	-0.047	-0.052	-0.062	-0.062	-0.065
11. 30CA, 3MS	-0.006	-0.028	-0.035	-0.039	-0.044	-0.046	-0.050	-0.060	-0.061	-0.066
12. 20S, 20FA	0.001	-0.018	-0.028	-0.034	-0.042	-0.048	-0.052	-0.059	-0.061	-0.065
13. 20S, 20CA	-0.008	-0.026	-0.037	-0.040	-0.044	-0.047	-0.051	-0.061	-0.062	-0.050
14. 1MS, 20S, 20FA	0.005	-0.023	-0.034	-0.039	-0.041	-0.045	-0.049	-0.060	-0.061	-0.056
15. 1MS, 20S, 20CA	0.015	-0.020	-0.023	-0.028	-0.034	-0.035	-0.043	-0.047	-0.047	-0.050
16. 3MS, 20S, 20FA	0.010	-0.016	-0.025	-0.033	-0.038	-0.040	-0.047	-0.051	-0.052	-0.056
17. 3MS, 20S, 20CA	0.010	-0.022	-0.034	-0.040	-0.044	-0.048	-0.051	-0.060	-0.062	-0.064
18. *1MS, 30CA	-0.003	-0.023	-0.033	-0.038	-0.043	-0.046	-0.049	-0.057	-0.059	-0.063
19. **30CA	0.002	-0.025	-0.037	-0.044	-0.052	-0.057	-0.067	-0.075	-0.077	-0.089

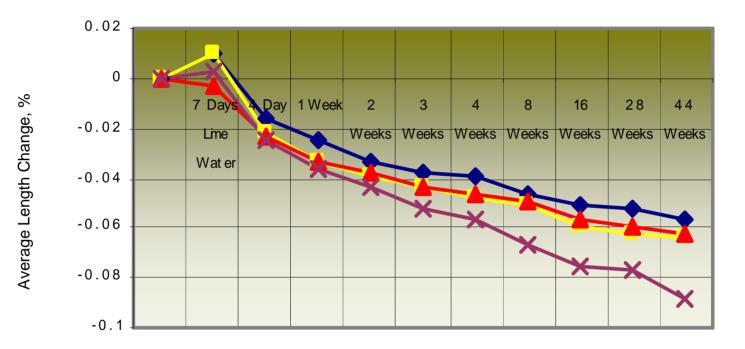
*Batch 18 is the same as Batch 10, except no DCI **Batch 19 is the same as Batch 8, except the water cementitious ratio is 0.50.

ASTM: C157 Drying Shrinkage Sets 1, 2, 3, 4 and 5



Age, weeks (cur e +air -dr y)

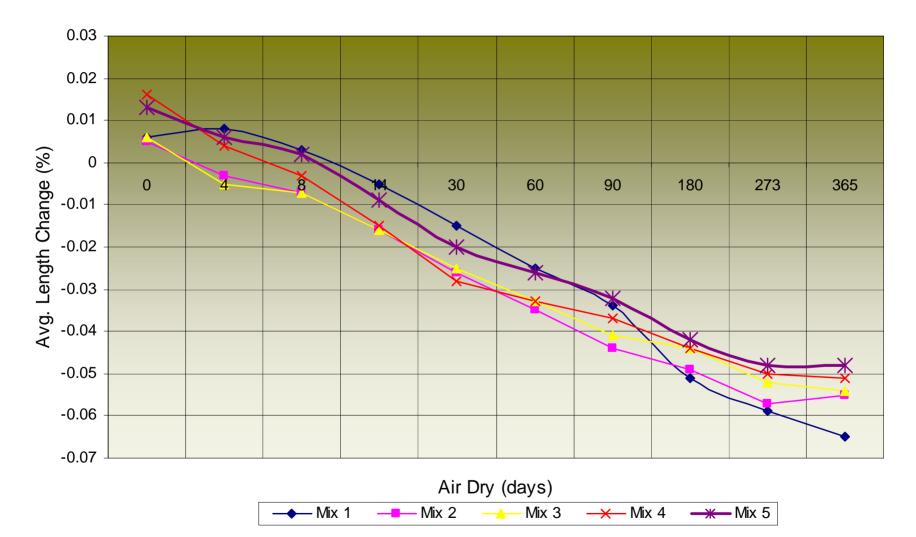

ASTM: C157 Drying Shrinkage Sets 6, 7, 8, 9 and 10



ASTM: C157 Drying Shrinkage Sets 11, 12, 13, 14 and 15

MINNESOTA CONCRETE COUNCIL

ASTM: C157 Drying Shrinkage Sets 16, 17, 18 and 19



Age, weeks (cur e +air -dr y)

MCC SHRINKAGE STUDY FROM 1999

MCC Shrinkage Study

<u>Mix No.</u>	Composition
1	6 sacks cement, 3/4" gravel
2	6 sacks cement, 12" optimized gradation
3	6 sacks cement, 12" optimized gradation, high range water reducer
4	6 sacks cement/15% fly ash, 12" optimized gradation
5	6 sacks cement/15% fly ash, 12" optimized gradation, high-range water reducer

Scaling Resistance Test

Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals

This test method covers the determination of the resistance to scaling of a horizontal concrete surface exposed to freezing-and-thawing cycles in the presence of deicing chemicals (ASTM C672/672M-98).

Basic Test Procedure

Create test specimens as prescribed, then place a 1" high dike around the perimeter of the specimen in order to pond a ¼" deep solution of calcium chloride and water. Then subject the specimen to repeated freezing-and-thawing cycles.

Rating System

- 0 No Scaling
- 1 Very light scaling (1/8" depth max., no coarse aggregate visible)
- 2 Slight to moderate scaling
- 3 Moderate scaling (some coarse aggregate visible
- 4 Moderate to severe scaling
- 5 Severe scaling (coarse aggregate visible over entire surface)

Scaling After 50 Cycles – Panels #1-2

Batch No. #1 Rating: 2

Batch No. #2 Rating: 2

Scaling After 50 Cycles – Panels #3-4

Batch No. #3 Rating: 3

Batch No. #4 Rating: 2

Scaling After 50 Cycles – Panels #5-6

Batch No. #5 Rating: 3

Batch No. #6 Rating: 1

Scaling After 50 Cycles – Panels #7-8

Batch No. #7 Rating: 2

Batch No. #8 Rating: 3

Scaling After 50 Cycles – Panels #9 & 11

Batch No. #9 Rating: 2

Batch No. #11 Rating: 2

Scaling After 50 Cycles – Panels #12-13

Batch No. #12 Rating: 2

Batch No. #13 Rating 3

Scaling After 50 Cycles – Panels #14-15

Batch No. #14 Rating: 0

Batch No. #15 Rating: 0

Scaling After 50 Cycles- Panels #16-17

Batch No. #16 Rating: 2


Batch No. #17 Rating: 2

Scaling After 50 Cycles – Panels #18-19

Batch No. #18 Rating: 3

Batch No. #19 Rating: 3

Scaling Results

Batch No.	Identification	Rating after 50 Cycles
1	PC	2
2	30S	2
3	30FA	3
4	30S, 1MS	2
5	30FA, 1MS	3
6	30S, 3MS	1
7	30FA, 3MS	2
8	PC	3
9	30CA	2
11	30CA, 3MS	2
12	20S, 20FA	2
13	20S, 20CA	3
14	1MS, 20S, 20FA	0
15	1MS, 20S, 20CA	0
16	3MS, 20S, 20FA	2
17	3MS, 20S, 20CA	2
*18	1MS, 30CA	3
**19	30CA	3

*Batch 18 is the same as Batch 10, except no DCI

**Batch 19 is the same as Batch 8, except the water cementitious ratio is 0.50.

