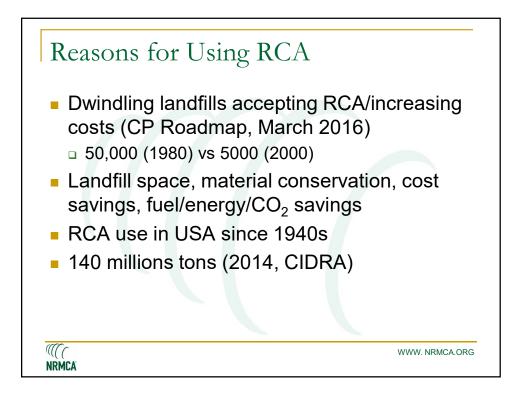


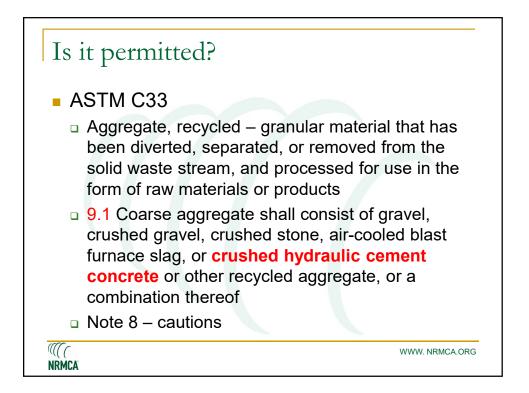
What is RCA?

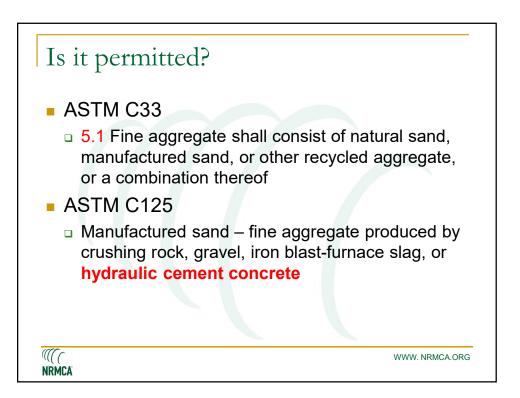
((((NRMCA

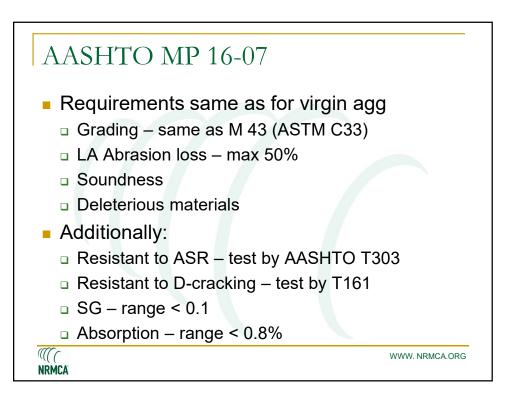
- ACI CCT defines RCA as hardened concrete that has been processed for reuse, usually as aggregate
- AASHTO MP 16-07 defines "Reclaimed concrete aggregate" (RCA) as
 - derived from crushing, processing and classification of hydraulic concrete construction debris recovered from roadways, sidewalks, buildings, bridges, and other sources...

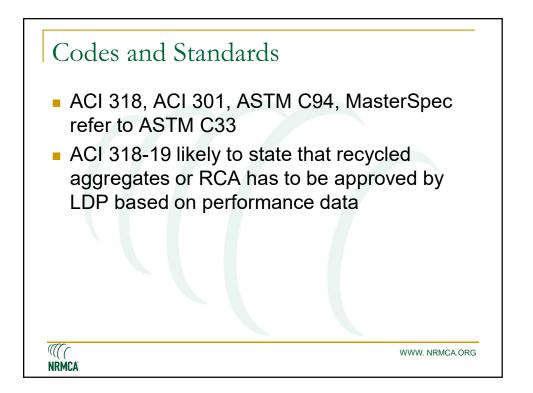
WWW. NRMCA.ORG

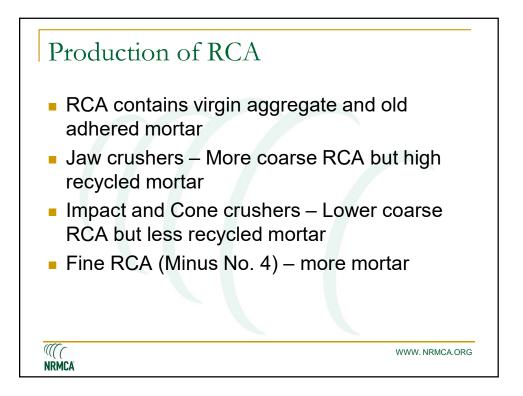










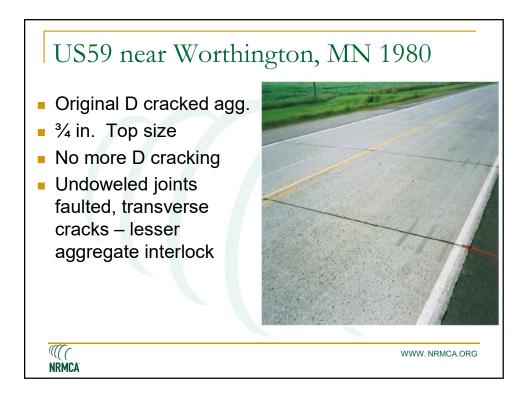


5 1	ese Stand 22 and 5023 (Red	ards cycled aggregate	for concrete, F	Recycled Concre	ete)
	Coarse a	aggregate	Fine ag	gregate	
	Density (g/cm ³)	Absorption (%)	Density (g/cm ³)	Absorption (%)	
JIS A502 (Class H	-	3.0 or less	2.5 or more	3.5 or less	
JIS A5022 (Class M		5.0 or less	2.2 or more	7.0 or less	
JIS A5023 (Class L)	_	7.0 or less	Ŀ	13.0 or less	
MACA NRMCA	[Dr. Noguchi, U of T	lokyo	WWW. NRMCA.ORG	

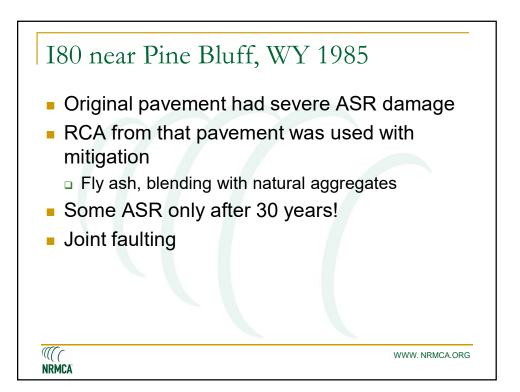
Applica	tions of Recycled Aggregate
	Scope of application
Class - H	No limitations are put on the type and segment for concrete and structures with a nominal strength of 45MPa or less JIS A 5308 (Ready-mixed concrete) allowing to use Class-H RA for normal strength concrete
Class - M	Members not subjected to drying or freezing-and-thawing action, such as piles, underground beam, and concrete filled in steel tubes
Class - L	Backfill concrete, blinding concrete, and leveling concrete
NRMCA	Dr. Noguchi, U of Tokyo

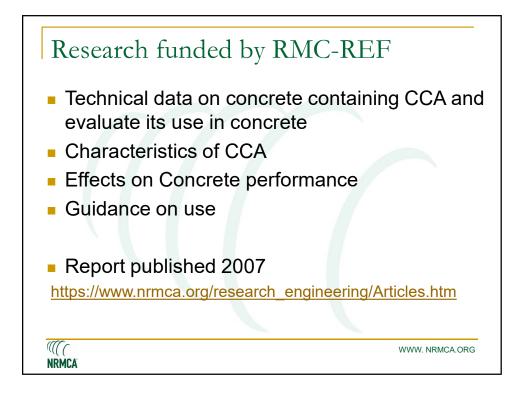
Table 1. Comparison		gin Aggregate and	
RCA Properties (Snya Property	<i>er et al 1994)</i> Virgin Aggregate	RCA	n
Shape and Texture	Well-rounded & smooth to angular & rough	Angular with rough surface	
Absorption Capacity	0.8% - 3.7%	3.7% - 8.7%	
Specific Gravity	2.4 - 2.9	2.1 - 2.4	
L.A. Abrasion Mass Loss	15% - 30%	20% - 45%	
Sodium Sulfate Soundess Mass Loss	7% - 21%	18% - 59%	
Magnesium Sulfate Soundess Mass Loss	4% - 7%	1% - 9%	
Chloride Content	0 - 2 lb/yd³ (0 - 1.2 kg/m³)	1 - 12 lb/yd³ (0.6 - 7.1 kg/m³)	
A, Snyder			


Effects of RCA on Fresh Cor	crete Properties and Behavior (after FHWA 20	007b, ACI 2001)
Property	Range of expected changes from s Coarse RCA only	similar mixtures using virgin aggre Coarse and Fine RCA
Workability	Similar to slightly lower	Slightly to significantly lower
Finishability	Similar to more difficult	More difficult
Water bleeding	Slightly less	Less
Water demand	Greater	Much greater
Air content	Slightly higher	Slightly higher

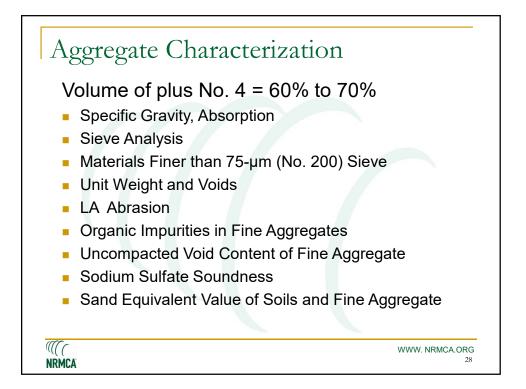

	Range of expected changes from similar mixtures using virgin aggregates				
Property	Coarse RCA only	Coarse and Fine RCA			
Compressive strength	0% to 24% less	15% to 40% less			
Tensile strength	0% to 10% less	10% to 20% less			
Strength variation	Slightly greater	Slightly greater			
Modulus of elasticity	10% to 33% less	25% to 40% less			
CTE	0% to 30% greater	0% to 30% greater			
Drying shrinkage	20% to 50% more	70% to 100% more			
Creep	30% to 60% greater	30% to 60% greater			
Permeability	0% to 500% greater	0% to 500% greater			
Specific gravity	0% to 10% lower	5% to 15% lower			
0,	ear, bond strength proportions to attain ploridos	performance			

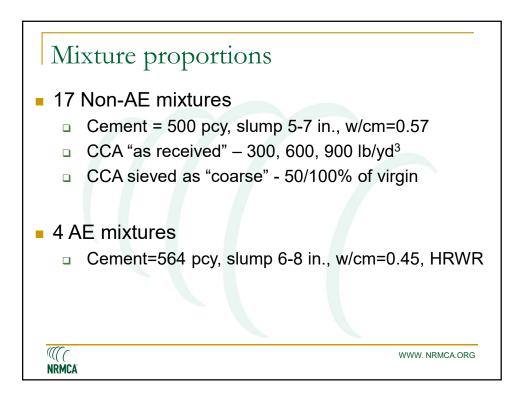
	Range of expected changes from si	imilar mixtures using virgin aggrega
Property	Coarse RCA only	Coarse and Fine RCA
Freeze-thaw durability	Depends upon air void system	Depends upon air void system
Sulfate resistance	Depends upon mixture	Depends upon mixture
ASR	Less susceptible*	Less susceptible*
Carbonization	Up to 65% greater	Up to 65% greater
Corrosion rate	May be faster	May be faster


			ents with RCA e Pavement Site Locations (Sturteva	
Project Location	Route	Site Title	Test Strip Location	Pavement Type
Waterbury,	I-84	CT1-1	WB, MP 33.71-33.91	Recycled
СТ		CT1-2	EB, MP 33.94-33.83	Control
Rock Rapids,	U.S. 75	IA1-1	n/a	Recycled
IA		IA1-2	NB, Sta. 1091+00 – 1101+00	Recycled
Effingham, IL	I-57	IL1-1	NB, Sta. 5417+50 – 5427+50	Recycled
		IL1-2	SB, Sta. 5427+50 - 5417+50	Recycled
Johnson Co.,	K-7	KS1-1	NB, .5 mi. north of 55 th St.	Recycled
KS	100000000 C	KS1-2	SB, 500' from KS River Bridge	Control
Brandon, MN	I-94	MN1-1	WB, MP 90.9-91.1	Recycled
		MN1-2	WB, MP 87.0-87.2	Control
Beaver	I-90	MN2-1	EB, Sta. 89+90 – 100+16	Recycled
Creek, MN		MN2-2	WB, Sta. 100+00 - 90+00	Recycled
Worthington, MN	US 59	MN3	SB, MP 27.00	Recycled
Zumbrota,	US 52	MN4-1	NB, Sta. 983+88 – 994+14	Recycled
MN		MN4-2	NB, Sta. 1035+01 - 1045+27	Control
Menomonie,	I-94	WI1-1	EB, MP 39.6-39.8	Recycled
WI		WI1-2	EB, MP 40.1-40.3	Recycled
Beloit, WI	I-90	WI2-1	WB, MP 176.8-177.0	Recycled
		WI2-2	WB, MP 176.2-176.4	Recycled
Pine Bluffs,	I-80	WY1-1	EB, starts 130' ft. east of MP 400	Recycled
WY		WY1-2	WB, ends 159' W of WY-NE Border	Control

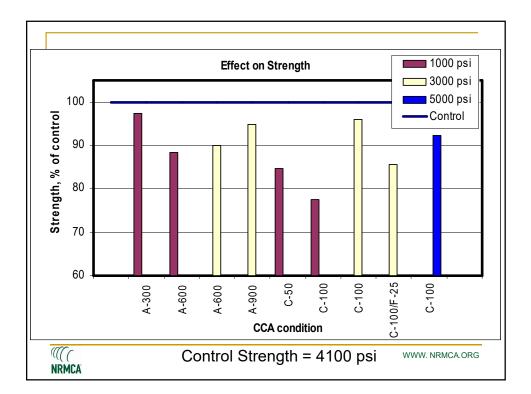


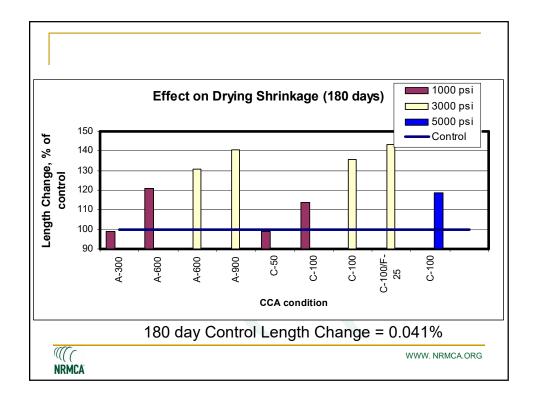
Motivation for Using CCA

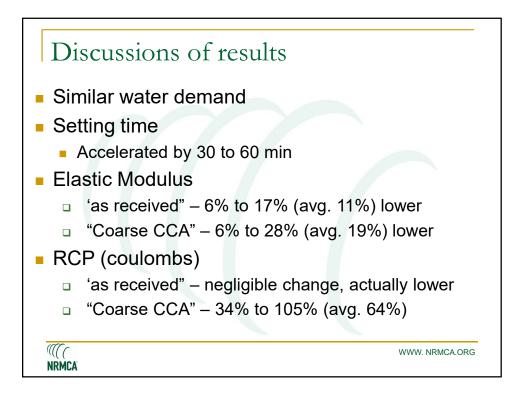

- Sustainability Reduce diversion to landfills
 - 12 million yd³ = 700 10' high foot ball fields/year
- Economic Costs \$100 to \$300 Million/yr

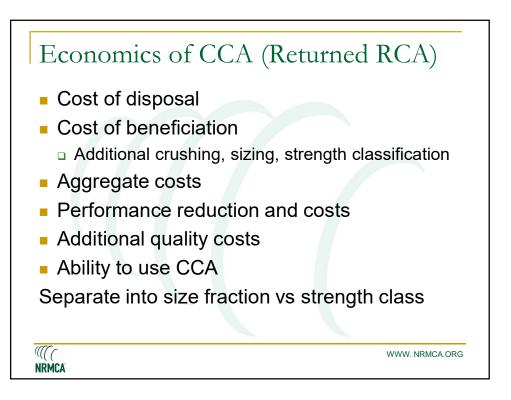


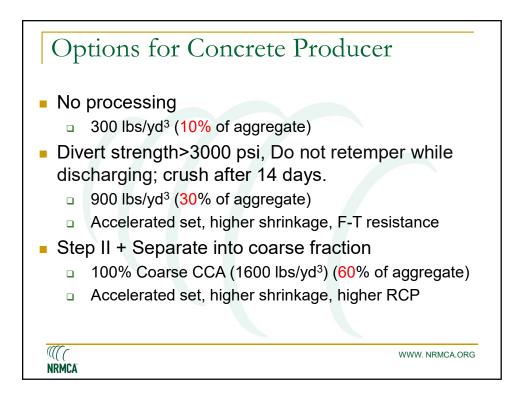
	1000	3000	5000	Control	ASTM C 33
LA Abrasion, %	23.8	26.0	-	13.2	50
Specific Gravity	2.56	2.54	2.58	2.92	NA
Absorption, %	4.40	4.31	4.32	0.86	NA
Minus 200, %	1.13	0.65	0.32	0.37	1 – 1.5
Soundness, %	22.84	8.24	-	0.46	12
NMSA = 1 to	1.5 ir	ו.			


Fine CCA	prop	oertie	S		
	1000	3000	5000	Control	ASTM C 33
Specific Gravity	2.17	2.25	2.27	2.61	NA
Absorption, %	11.90	10.25	10.03	0.95	NA
Minus 200, %	7.31	9.50	7.64	1.40	5-7
Soundness, %	31.19	16.28	-	2.72	10
((((Nrmca					WWW. NRMCA.ORG

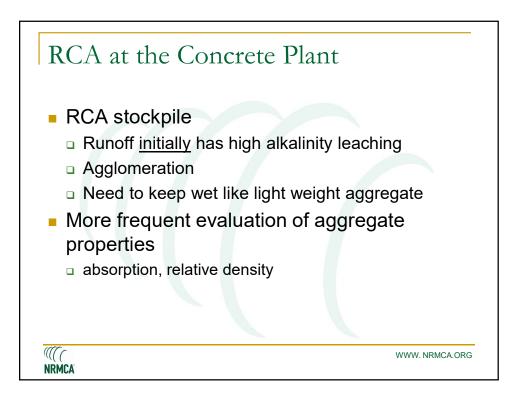


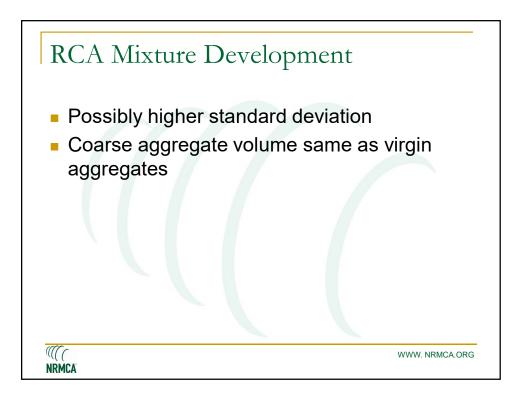


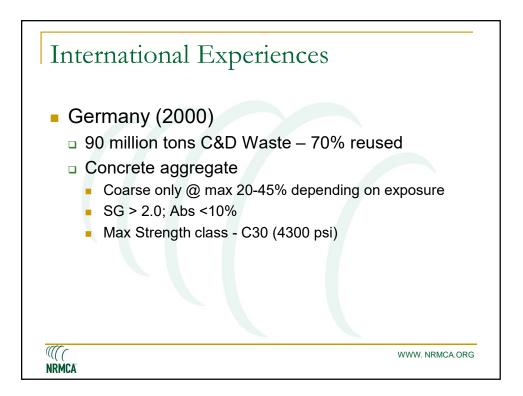


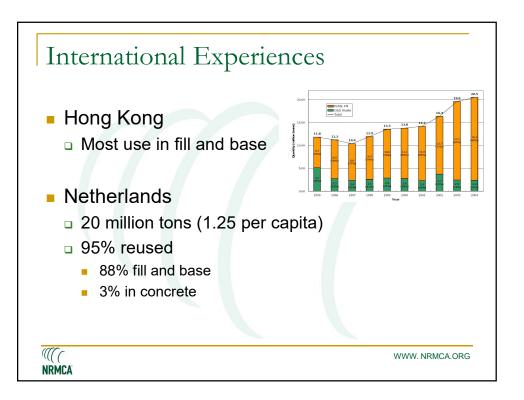

Mix Description	ASTM C1293 Expansion %, 1 yr
No.57 Virgin Coarse + Virgin Crushed Fine	0.022
No.57 Virgin Coarse + 600 lbs/yd ³ CCA + Virgin Crushed Fine	0.027
Coarse 3000 CCA + Virgin Crushed Fine	0.032
No.57 Virgin Coarse + Fine 3000 CCA	0.028

	Control	1000 - 600	3000 - 600	3000 – 100% coarse
ASTM C666 Durability Factor, %	92	13*	9	89
ASTM C231 Air Content, %	6.4	4.8	5.6	8.5
 Original CCA made from F-T resistance may need 			e	

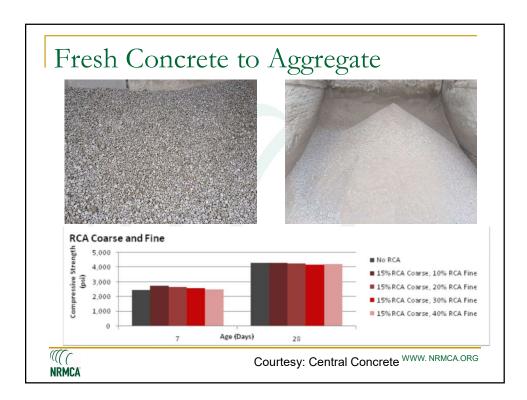

	SL-1	SL-2	SL-3	SL-4
ССА Туре	0	1000	3000	3000
CCA, lbs/yd ³	0	300	NA	NA
CCA, coarse, %	0	NA	100	100
Slump Retention Study				
Slump, inch				
Slump1	6.50	7.00	7.25	6.75
Slump2 (30 min agitation)	5.75	4.00	6.00	4.50
Slump3 (water added @ 30 min)	6.00	7.00	6.50	7.50
Slump loss, % of slump1	11.5%	42.9%	17.2%	33.3%
Water Adjustment, lbs/yd3				
Slump2 \rightarrow Slump3	14	17	12	17
Compressive Strength at 14 days,	psi			
Sampled with Slump1	4340	4340	4100	3870
Sampled with Slump3	4240	3840	4020	3960

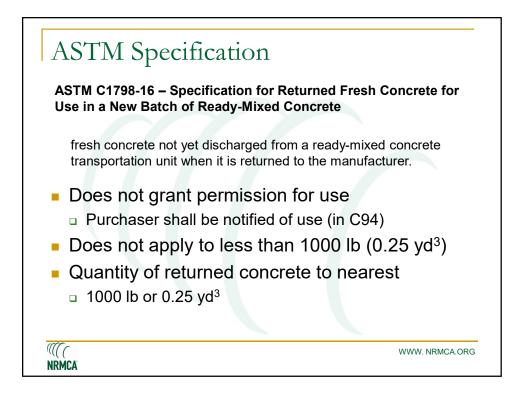


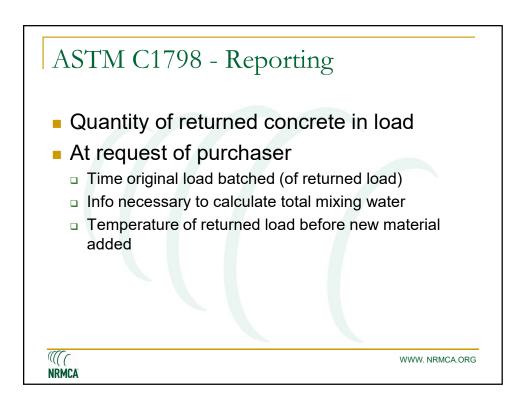




Mixture Proportion	ning Concept
NA Particle	RCA Particle
	Original Virgin Aggregate
	Residual Mortar
	New Mortar
(New Mortar Volume) _{RAC} +(Total Residu	al Mortar Volume) _{RAC} (Mortar Volume) _{NAC}
a) Natural aggregate concrete (NAC)	b) Recycled aggregate concrete (RAC)
Fathifazl et. al. Concrete	International, March 2010
((((NRMCA)	WWW. NRMCA.ORG

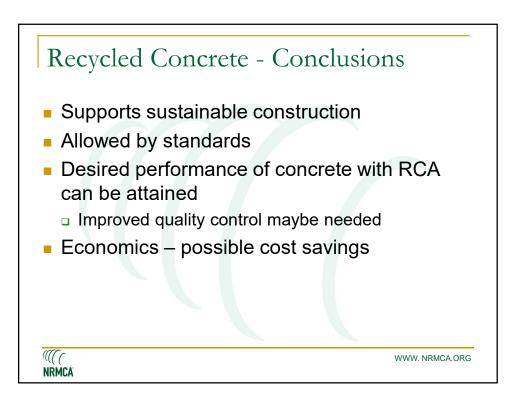






- If age > 90 min use hydration stabilizing admixture
- Age of returned load (with HSA) less than 8 hours

WWW NRMCA ORG


- Temperature before loading shall be < 100°F
 Cannot be cooled to get to this temp
- Specified strength of returned load should be equal to or greater than that for new load
- Volume of returned load < 50% of new load</p>

 \mathbb{M}

NRMCA

