When Worlds Collide

Project Specifications vs. Sustainability Initiatives

Richard S. Szecsy, PhD, PE, FACI President Texas Aggregates and Concrete Association

Midland Hills Country Club, St. Paul, Minnesota April 17, 2014

General Overview

- General design philosophy
- Sustainable initiatives
- Conflicts

Sustainability from Two Perspectives

PRODUCT

- Raw materials
- Composite materials
- Recycled content
- Design decisions

PROCESS

- Materials storage
- Manufacturing
- Transportation
- Waste management

SUSTAINABILITY IN CONCRETE

Another viewpoint to consider

$$\int_{boundary \ conditions}^{\# \ of \ years} f(x) dx$$

- Where **x** is the:
 - Sustainability of the material(s) such as the mix design?
 - Resiliency of the project?

Sustainable Product Design Philosophy

Sustainability = <u> Design Requirement > Design Function</u> Time

- Design Requirement
 - Specified level of performance necessary
- Design Function
 - Specified intent for use of the structure from the Owner

Sustainable Design Philosophy

Design Requirement = PERFORMANCE

Sustainability = Performance > Function Time

Performance

 Expected result from the design as measured by a standard method

• Function

Intended use of structure or structural element

What about...

Resilience

Ability to recover from or survive difficult and/or negative conditions.

$Resilience = \frac{\text{Design} > \text{Function} + f(\text{Negative Conditions})}{\text{Time}}$

Design

Specified level of performance necessary

• Negative (or Difficult) Conditions

- Flood, wind, rain, tornado, hurricane, etc.

$Resilience = \frac{Performance > Function + f(Negative)}{Time}$

• Performance

 Expected result from the design as measured by a standard method

• Function

- Intended use of structure or structural element
- Negative (or Difficult) Conditions
 - Flood, fire, tornado, hurricane, wind, rain, etc.

Concrete Design Philosophy

- Generally accepted design approach
- Supported by Codes and Standards
- Don't have to exercise judgment
- Perception that it minimizes liability

$$Resilience = \frac{Performance > Function + f(Negative)}{Time}$$

- Does a traditional design approach create an inherent conflict with resilient and/or sustainable design?
- How do we alter the design approach?
- How do we solve the conflict in the field?

RESILIENCE > SUSTAINABILITY

Traditional design approach (criteria)	Resilient and/or Sustainable design criteria
Slump	Recycled content (rate)
Max. aggregate size	Emissions footprint
Water content	Extraction and/or production proximity
Air content	Survivability
w/c ratio	Durability
Coarse agg content	Cost (first and life cycle)
Fine agg content	EPD (It is HERE!)

Traditional or Prescriptive Elements

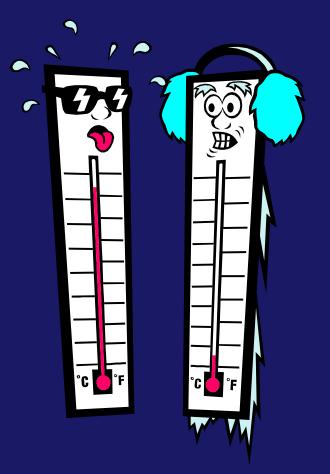
• By the Code, or generally accepted design methods:

- Maximum w/cm
- Minimum cement content
- Limitations on pozzolanic replacement
- Air content
- Slump ranges not determined by Contractor
- Time and drum revolution limits
- None of these are "performance" based

Technology Example - HVFA

- What happens over 30%?
 - History is not kind...
- Why not 40%, 50%, 60%?
- Equal performance
 - Set time, strength, etc.
- Changes in contracting
 - Finishing, curing, etc.
- Proprietary Mix Designs

Pervious Concrete


- No fines, porous
- Mono-sized
- %15 to 35% voids
- 8 to 20 gal/min/ft²
- 2000 to 4000 psi
- Fixed proportions?

Video provided by: http://www.chargerconcrete.com/perviousconcrete.htm, August 2004

Reflective Concrete...Cool Pavements

- Higher reflectivity reduces air temperatures
 - 0.1 increase \approx 10°F decrease
 - Heat island effect
- "Albedo" is unit of measurement
 - ASTM C1549
 - When is it measured?
- Function of available materials
 - Test panels are critical.
 - What if it does not work?

Innovation: Self Compacting Technology

- Placement without segregation
- Non-segregating
- Free flowing
- Not a new concrete!
- Energy reduction???

Recycled Water and Stormwater

- The problem we all have...
- ...we are at zero discharge
- Why would a specification not support its use?
- Batch panel controls
- Document each load

Issues and Challenges: <u>Engineers</u>

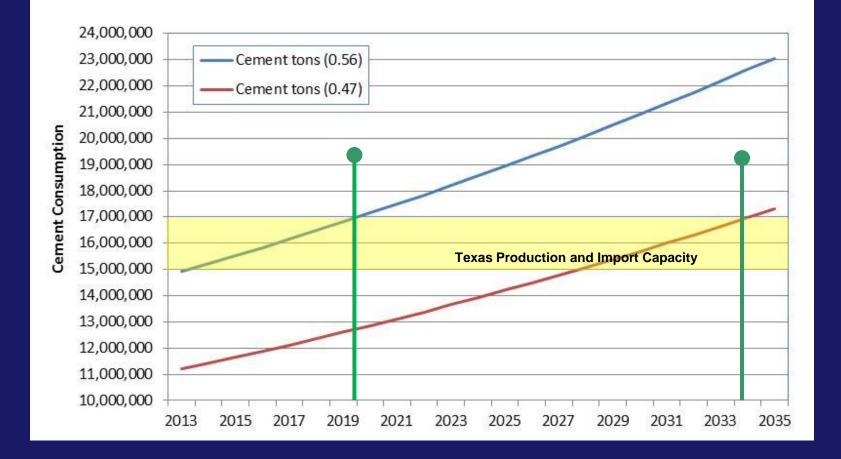
- **Green Building = Performance**
- What performance is needed?
 - Verification of performance
 - Do your homework
- Be explicit, not implicit!
 - Set time
 - What strength at what day?
- Must see the mix design...why?

Issues and Challenges: Architects

- Often don't understand own specification
- Material experience is rarely first hand, based on last major problem...
- What is the metric for performance?
- Cost awareness is essential!

Issues and Challenges: Contractors

- "Any change is a bad change"
 - Changes in placing
 - Changes in finishing
- Someone else is the expert
- \$/ft² can be the deal breaker
- Performance is too good?
- Contradictions?
 - Remove the Environmental fee?!?



Issues and Challenges: <u>Testing Labs</u>

- Verify performance for owner
 - Based on job specs (explicit!)
 - <u>NOT</u> based on speculation or assumption
- New concrete and old assumptions = problems
- Mix design?
- When to include in process

The Coming Apocalypse

Richard S. Szecsy, PhD, PE President

Texas Aggregates and Concrete Assoc. 900 Congress Austin, Texas 78701 214-202-1379 cell 512-451-5100 ofc

rich.szecsy@tx-taca.org www.tx-taca.org

