

Strength • Strong enough √ Controlled by w/cm • Stiffness? √ High stiffness = small deflections √ Low stiffness = high cracking risk

So What Do they Do?

- Hardened
 - Reduce permeability
 - Reduce ASR expansion
 - Higher long term strength

How Much?

Class F fly ash: 15% - 25%
Class C fly ash: 15% - 40%
Slag: 25% - 50%

Too little – no benefit Too much – slow setting, slow strength gain, cracking risk

Blended at the concrete batch plant, or blended or interground at the cement plant

6

Blended or Interground Cements - ASTM C 595

• IS (x) Slag cement

• IP (x) Pozzolan (e.g. fly ash)

IT (Ax)(By) Ternary*IL(x) Limestone

* e.g. IT (S25)(P15) = 25% slag,15% fly ash & 60% portland cement

Effects of Extra Water on Concrete

- · Adding 1 gallon / yd3
- Increases workability ~1"
- · Lowers strength ~200 psi
- Increases drying shrinkage ~10%
- Increases permeability ~ 50%

Air Entraining Admixtures

- Provide resistance to freezing and thawing
- Improved workability, reduced water, and reduced segregation
- · Reduces strength
- Inexpensive
- ASTM C 260

Air Entrainers

- · Vinsol / Rosin / Tall Oil
- Synthetics
 - ✓ Bubble size
 - √ Stability
 - ✓ Effects of WRA

Water Reducers

Reduce water required about 5% (12%)
ASTM C 494 Type A (or F)
Lignin (polycarboxylate)
May retard setting (affect air-entrainment)

Shrinkage Reducing Admixtures • Menisci set un forces as air / water

- Menisci set up forces as air / water interface penetrates from surface
- SRAs change angle of contact inside capillaries

Common Misconceptions

- More cement means stronger concrete
- Supplementary cementitious materials are dilutants
- Stronger concrete is more brittle & that is bad
- · Strength and workability are correlated
- Strength and durability are correlated

Putting It All Together

- w/cm
 - ✓ Concrete exposed to the weather = 0.38 to 0.42
 - ✓ Interior = 0.45 to 0.50
 - ✓ Don't care = >0.50

Putting It All Together

- · Air Void System
 - ✓ Spacing factor <0.008 inch
 - ✓ Air content >5% behind the paver

Putting It All Together

- Fly Ash Type
 - √ Class F is slower, good for durability
 - ✓ Class C is faster, OK durability, rare incompatibility issues
- · Fly Ash Dose
 - ✓ Maximum depends on weather and set time

Putting It All Together

Slag Cement Dose
 ✓ Maximum depends on scaling

Putting It All Together

- · Ternary Mixtures
 - √ Test for properties
 - √ Good for sustainability
 - ✓ Reduced permeability

Putting It All Together

- · Cementitious Content
 - ✓ Enough, and not much more
 - ✓ Depends on aggregate gradation and workability

Putting It All Together

- · Aggregate Contents
 - √ Target good combined gradation
- Aggregate Quality
 - ✓ D-Cracking
 - ✓ ASR AASHTO protocol use blended cements)
 - ✓ Use DOT approved sources

Putting It All Together

- Admixtures
 - √Will vary depending on weather
 - ✓ Do not specify dosage
 - √ Compare with manufacturers' guidelines

Current Proportioning Technologies

- Developed
 - √ Before water reducers
 - ✓ Before supplementary cementitious materials
- Primarily focused on structural concrete
 - √100 mm (4") slump
 - √30 MPa (~4000 psi)
- ACI 211 last revised in 1991

Absolute Volume Approach

- Paste volume based on coarse aggregate size
- Coarse aggregate volume based on subtracting the fineness modulus (FM) of sand from a fudge factor
- Fill the remaining volume with sand

What do we measure now?

- How are these related to potential distress?
 - ✓ And tougher environments
 - ✓ And new materials
 - ✓ And new practices

What do we want to measure?

- Critical Properties at design / proportioning stage
- Uniformity at delivery
 - ✓ Testing
 - √ 3'rd party records

AASHTO Guide Specification

- · Based on existing specs
- Add new thinking
- · Take out some stuff

Materials

- Cement M85, M240
- Slag cement M302
- Fly ash M295 (ASTM C 1709)
- Admixtures M154, M194 (others?)

Materials

- · Aggregates
 - ✓ M80 for contaminants
 - ✓ PP65 for ASR
 - √ ?? For d-cracking
 - ✓ Continue with current individual fraction gradation
 - ✓ Address combined gradation in proportioning
 - ✓ ASTM C 1761 for IC

Property	Value	AASHTO Test Method	When Test Must be Conducted*
Combined Aggregate Gradation	Within Tarantula Curve	T27	All
	#8 - #30 >15%		
	24% < #30 - #200 < 34%		
Cementitious content	400 lb/yd3, minimum	Batch records	Mixture design
	658 lb/yd3, maximum	Batch records	Mixture design
Portland cement content	50% of cementitious, minimum	Batch records	Mixture design
Class C Fly Ash**	30% maximum cement replacement	Batch records	Mixture design
Class F Fly Ash**	25% maximum cement replacement	Batch records	Mixture design
GGBFS**	50% maximum cement replacement	Batch records	Mixture design
w/cm ratio	[0.42] [] maximum	Batch records	All
Entrained air	4% after placement, and	T 152, T 196M/T 196,or T 199	All
	0.2 SAM number	Super-air-meter	All
	2% maximum loss during placement	T 152, T 196M/T 196.or T 199	All

Property Value AASHTO Test Method Conducted Electrical Resistivity [27] [...] k\Omega-cm minimum TP 95 All at [28] [...] days Compressive strength [4000] [3500] [...] psi T 22 All minimum at [28] [90] days Freeze thaw resistance RDM > [80] [...] % C666 Mixture design Shrinkage Crack free at [14] [...] ASTM C 1581 Mixture design always ASTM C 157 Mixture design Mixture design

Property AASHTO Test Method Modulus of elasticity at 28 ASTM C 469 days Drying shrinkage ASTM C 157 Coefficient of thermal expansion Rate of strength developmentT 22 to 90 days Rate of development of electrical resistivity Unit weight T 121 Slump T 119

Property	AASHTO Test Method	When Test Must be Condu	
Air void system	Foam Drainage	Mixture design	
Slump	Within 1" of design mix	T 119M/T 119	
Unit weight	Within 3 pcf of design mix	T 121	
Calorimetry	Adiacal	Construction	
Maturity	ASTM C 1074	Construction	
Strength development	T 22	Construction	
Resistivity Development	TP 95	Construction	

