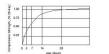
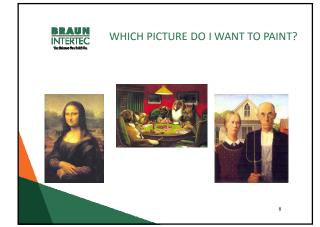



BRAUN INTERIEC DEFINITION: NON-DESTRUCTIVE

- Nondestructive evaluation (NDE) of materials is, by definition, the science of identifying the physical and mechanical properties of a piece of material without altering its end-use capabilities.
- Such evaluations rely upon nondestructive testing (NDT) techniques or tools to provide accurate information pertaining to the properties and performance of the material in question.
- NDE vs. NDT



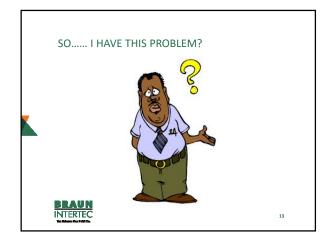

BRAUN INTERTEC COMPRESSIVE STRENGTH AND NDT

- Surface Hardness Rebound Hammer
- Penetration Resistance Windsor Probe
- Maturity Method
- Ultrasonic Pulse Velocity
- Combined Methods
- Other Pullout, Break-Off, Resonant Frequency

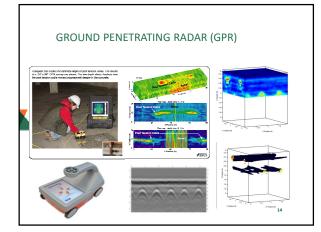
PERFORMING A NDT INVESTIGATION Performing A not investigation NDT in its best form is still "indirect information about the present conditions of a test subject." Physical Testing to satisfy our analytical minds or make direct correlations to NDT results. Supplemental Testing (ACI 228.2R-55) Assess the conditions at selected points when the NDT results are interesting to make the interest of th

- results are inconclusive
- Provide Samples for additional testing to supplement the NDT investigation
- Refine correlation between NDT results and actual conditions

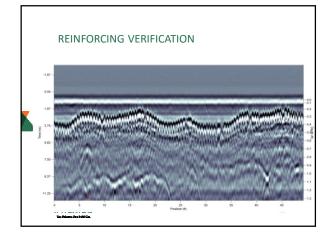
have to make decisions based on the results of the investigation"

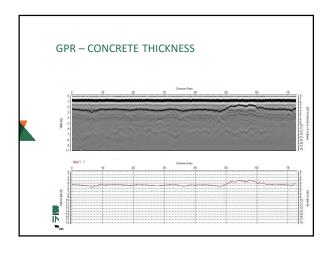

10

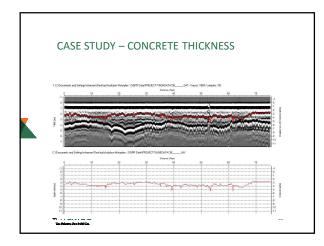
NDT & STRUCTURES EVALUATION AT BRAUN INTERTEC Servicing clients across the Midwest, Texas, Greater U.S. and International Support from CMT, NDT, Petrography, and

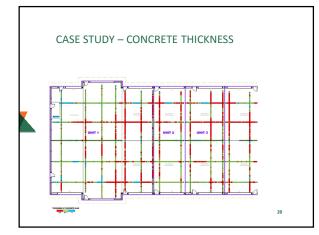

Chemistry Laboratories

Mobile Equipment and Capabilities

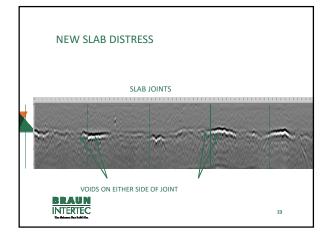




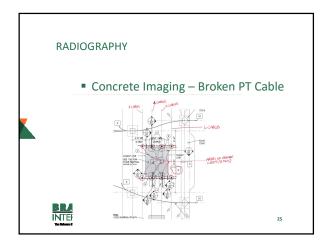


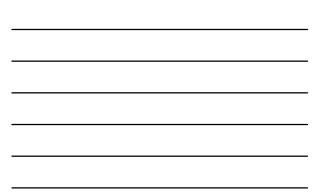


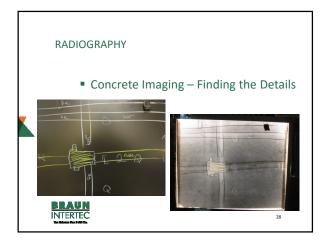
Uner	Location/Room #	Direction	Length of Line	Maaimam Thicknose	Minimum Thickness	Avarage Thickness	Total Points Evaluated	% Of Data Points Less 1 Inch Thickness
			(9)	(4)	(10)	(01)		
0	1138	N-S	95.01	4.64	8.04	3.77	403.00	64.60%
1	1138	W-E	27.24	4.90	3.32	4,34	681.00	28.14%
2	1138	W-E	42.23	5.54	3.02	4,62	1057.00	4.82%
2	1138	N-8	25.95	4.99	4.12	4,85	674.00	0.00%
4	1136	N-8	27.32	6.27	3.51	4,70	683.00	14.20%
5	1139	N-S	30.84	5.17	3.51	4,51	771.00	4.28%
6	1127	E-W	44.20	5.72	3.8	4,68	1103.00	10.24%
7	1131	E-W	45.95	6.46	4.06	4,77	1149.00	0.00%
8	2202 - Hallway	W-E	23.20	5.72	4.25	4,85	\$78.00	0.00%
	F Wing Hallway	W-E	45.03	7.57	3.69	4.52	1123.00	12.20%
10	3326	W-E	27.92	5.35	3.61	4.35	095.00	13.47%
11	3327	W-E	29.02	4.95	3.51	4.35	700.00	18,20%
12	3827	N-G	25.35	4.98	3.69	4.90	634.00	11.67%
13	1109	N-S	54.44	5.72	3.51	4.01	1359.00	4.88%
14	MPR Room	E-W	42.64	6.95	3.51	4,45	1064.00	7.09%
16	Mer's Locker Roam	E-W	72.60	6.72	2.95	4,53	1814.00	10.70%
10	Mer's Looker Roam	N-S	32,48	4.80	2.95	3.79	782.00	72.10%
17	1134 - Auto Shop	S-N	25.55	4.98	3.51	4.34	652.03	19,79%
10	1134 - Auto Shop	W-E	53.03	7.35	3.52	6,14	1316.00	35,55%
19	1134 - Auto Shop	W-E	61.24	5.91	\$.14	4.22	1530.00	29.41%

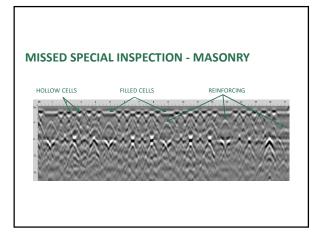


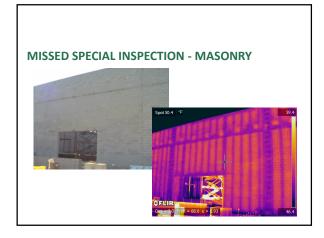


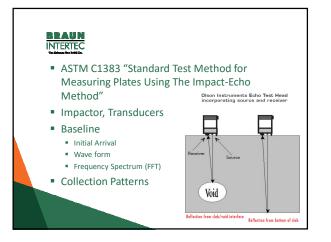


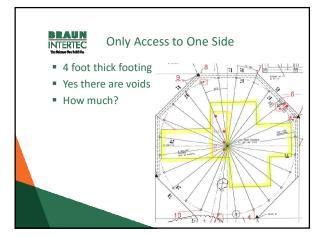


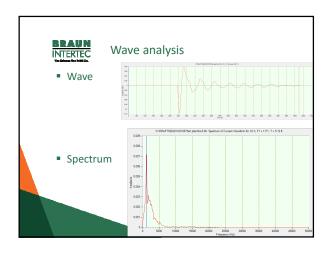


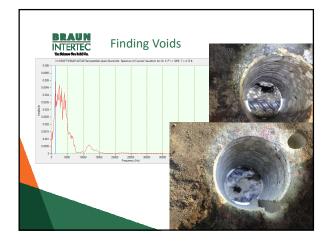


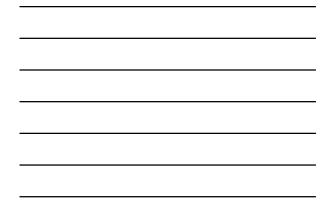


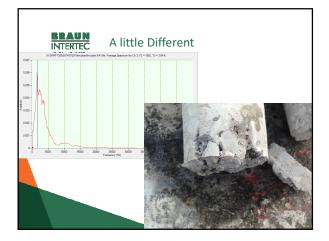












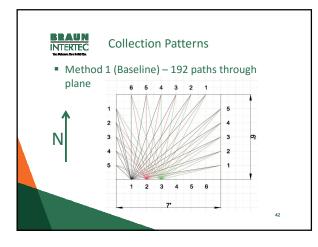
Summary

- Found additional void and consolidation issues
- Were able to return and retest after repairs were complete.

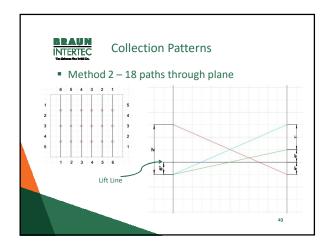
Impact Echo - Condition Evaluation

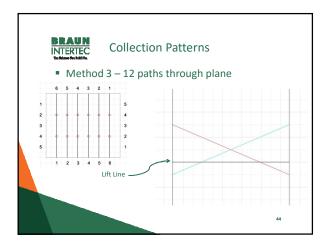
ULTRASONIC PULSE VELOCITY (UPV)

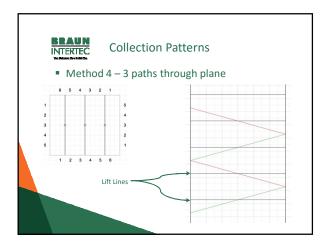
- ASTM C597 "Standard Test Method for Pulse Velocity Through Concrete
 Ultrasonic Pulse
- Speaker, microphone
- Baseline
 - Initial Arrival
 - Wave form
- Frequency Spectrum (FFT)
- Collection Patterns

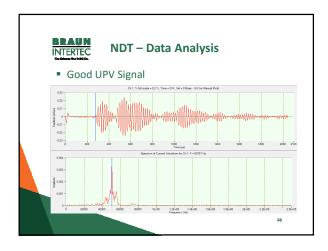


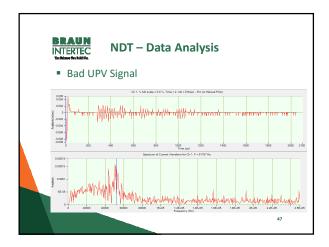
ULTRASONIC PULSE VELOCITY (UPV)

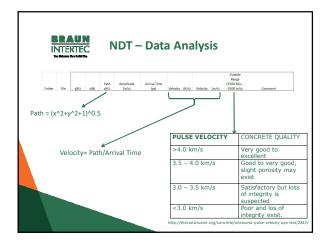

- 4 Columns
- 6 feet x 7feet x 36 feet
- 8 feet Max Hydrostatic Head
- Self Consolidating Concrete
- Delayed 22 inch lifts



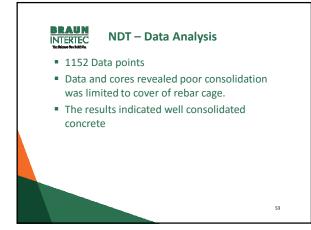




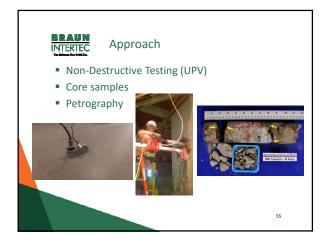


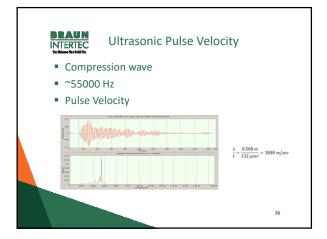


1	NTE	RTE			IDT -					
			C			- I Jat	a Δna	lvcic		
	in Education					Dut		119313		
									Outside	
									Bange	
				Path	Amplitude	Arrival Time			(3500 M/s -	
Folder File yif	y(ft)	x(ft)	z(ft)	(in/s)	(µ3)	Velocity (ft/s)	Velocity (m/s)	5500 m/s)	Comment	
							Method 1) North a			
105	1051	6	1	6.16	0.005	458	13459	4102		
105	2	6	2	6.40	0.009	462	13860	4224		
105	3	6	3	6.78	0.004	491	13813	4210		
1n5	4	6	4	7.28	0.005	519	14027	4276		
1n5	5	6	5	7.87	0.013	538	14635	4461		
1n5	6	5	1	5.20	0.009	472	11009	3356	-144	Coupling issue
1n5 1n5	7	5	2	5.48	0.005	451	12145	3702 4431		
105	9	5	4	6.48	0.009	407	14536	4431		
105	10	5	5	7.14	0.009	496	14398	4341		
105	10	4	1	4.24	0.025	298	14398	4340		
105	12	4	2	4.58	0.007	325	14100	4298		
105	13	4	3	5.10	0.015	315	16187	4934		
105	14	4	4	5.74	0.004	399	14397	4388		
105	15	4	5	6.48	0.005	451	14370	4380		
105	16	3	1	3.32	0.03	236	14053	4284		
105	17	3	2	3.74	0.015	264	14173	4320		
105	18	3	3	4.36	0.008	303	14385	4385		
105	19	3	4	5.10	0.009	356	14323	4365		
105	20	3	5	5.92	0.002	406	14572	4441		
105	21	2	1	2.45	0.015	174	14078	4291		
1n5	22	2	2	3.00	0.013	220	13635	4156		
1n5	23	2	3	3.74	0.02	261	14336	4370		
1n5	24	2	4	4.58	0.01	325	14100	4298		
1n5	25	2	5	5.48	0.005	402	13625	4153		
1n5	26	1	1	1.73	0.05	125	13856	4223		
1n5	27	1	2	2.45	0.06	122	20078	6120	620	
1n5	28	1	3	3.32	0.03	230	14420	4395		
1n5	29	1	4	4.24	0.013	367	11560	3524		

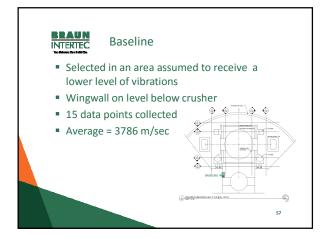


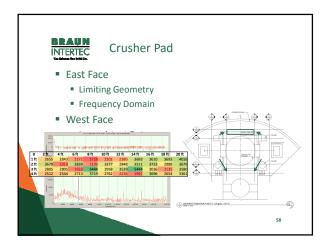
- IN	NTE	RTE	C	Ν	IDT -	- Dat	a Ana	lycic		
				N	IDT -	- Dat	a Ana	lvcic		
						Dat				
								11 y 313		
									Outside	
									Range	
				Path	Amplitude	Arrival Time			(3500 M/s - 5500 m/s)	Comment
Folder	Folder File	y(ft)	x(ft)	z(ft)	(in/s)	(µ3)	Velocity (ft/s)	Velocity (m/s)		
							Method 1) North a			
105	1n51	6	1	6.16	0.005	458	13459	4102		
105	2	6	2	6.40	0.009	462	13860	4224		
105	3	6	3	6.78	0.004	491	13813	4210		
105	4	6	4	7.28	0.005	519	14027	4276		
105	6	5	1	5.20	0.013	538	14636	3356	-144	Coupling issue
105	7	5	2	5.20	0.005	4/2	12145	3356	-144	Coupling issue
105	8	5	3	5.92	0.005	407	14536	4431		
105	2	5	4	6.48	0.009	407	14336	4541		
105	10	5	5	7.14	0.009	496	14398	4389		
1n5	11	4	1	4.24	0.025	298	14237	4340		
1n5	12	4	2	4.58	0.007	325	14100	4298		
1n5	13	4	3	5.10	0.015	315	16187	4934		
1n5	14	4	4	5.74	0.004	399	14397	4388		
1n5	15	4	5	6.48	0.006	451	14370	4380		
1n5	16	3	1	3.32	0.03	236	14053	4284		
105	17	3	2	3.74	0.015	264	14173	4320		
105	18	3	3	4.35	0.008	303	14385	4385		
105	19	3	4	5.10	0.009	356	14323	4365		
1n5	20	3	5	5.92	0.002	406	14572	4441		
1n5	21	2	1	2.45	0.015	174	14078	4291		
1n5	22	2	2	3.00	0.013	220	13636	4156		
105		2	3	3.74				4370		
105	24	2	4	4.58	0.01	325	14100	4298 4153		
105	25	1	1	1.73	0.05	402	13625	4155		
105	27	1	2	2.45	0.06	123	20078	6120	620	Travel Along Ste
105	28	1	3	3.32	0.03	230	14420	4395	020	mavel Mong Sta
105	29	1	4	4.24	0.013	367	11560	3524		
105	30	1 î		5.20	0.008	390	13323	4061		

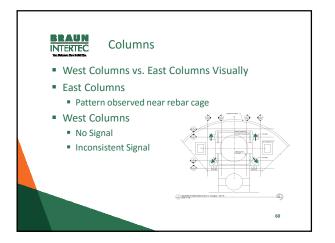


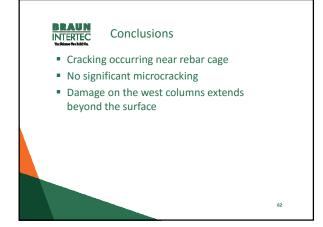


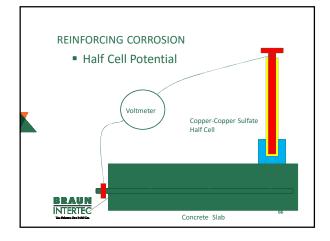
- Crusher to be replaced August 2015
- Concerns of fatigue damage
- Visual distress on 2 of 4 columns

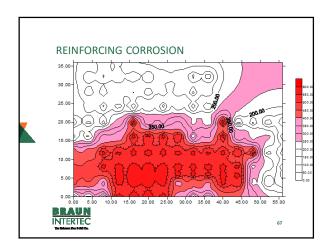


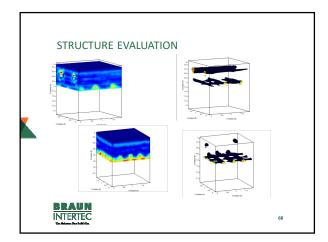


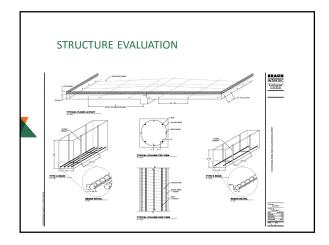




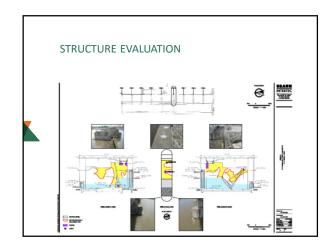


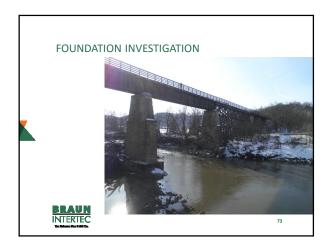


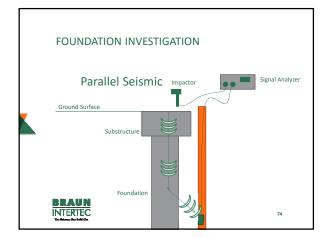







12/19/2016


Not The



BRAUN INTERTEC

